Setting-up a 3D geological model both from field and subsurface data is a typical task in geological studies involving natural resource evaluation and hazard assessment. In this study a 3D geological model for Mishrif Formation in Garraf oil field has been set-up using Petrel software. Mishrif Formation represents the most important reservoir in Garraf oil field. Four vertical oil wells (GA-4, GA-A1P, GA-3 and GA-5) and one directional well (GA-B8P) were selected in Garraf Oil Field in order to set-up structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three dimensions. Structural model shows that Garraf oil field represents a domal structure that shows continuous growth as indicated by the structural maps at top of reservoir units. The structural closure is shifted from GA-3 well to GA-A1P well. Mishrif Formation was divided into ten zones (top Mishrif, M1, M1.2, M2, L1, L1.2, L2, L2.2, L2.3 and L2.4.). Petrophysical model (porosity and water saturation) for Mishrif Formation was set-up from values of porosity and water saturation using Sequential Gaussian Simulation algorithm. According to data analyses and the results from modeling the units (M1.2, L1 and L1.2) are considered as high quality reservoir units due to the high PHIE and low water saturation. Units (L2, L2.2, L2.3 and L2.4) are considered as poor reservoirs because of low PHIE and high water saturation, and non-reservoir units include (Top Mishrif, M1 and M2) therefore, they represent cap units. Cross sections of petrophysical model were conducted to illustrate the vertical and horizontal distribution of porosity and water saturation between wells in the field.
A 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulnen
... Show MoreThe Hartha Formation is one of the important formations deposited during Late Campanian age.
The present study deals with four boreholes (EB-53, 54, 55 and 56) within the East Baghdad oil field to diagnoses the microfacies and interpret the depositional environments.
Six major microfacies were recognized in the succession of the Hartha Formation. Their characteristic grain types and depositional texture enabled the recognition of paleoenvironment. There are Orbitoides wackestone-packstone , Orbitoides - miliolid wackestone, Peloidal and Pellets - echinoderm wackestone to packstone, Peloidal wackestone to packstone, Pelletal wackestone to packstone, and Planktonic foraminifera wackestone-packstone.
Four assoc
... Show MoreRadiological assessment for the East Baghdad oilfield-southern part was conducted in the current study. 10 samples (scale, soil, sludge, water, and oil) from the different stages of oil production were collected. 232Th, 226Ra, and 40K in the samples were analyzed with 40% efficiency for Gamma spectrometry. system based on HPGe. The findings indicated that the examined sites exhibit comparatively lower levels of NORM contamination, in contrast to other global oilfields. Nevertheless, certain areas, particularly those within separation stages, demonstrate relatively elevated NORM concentrations exceeding the global average in soil and sludge. The maximum value of 226Ra, 232Th, was found in sludge sample the findings indicated that ove
... Show MoreWellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
3D geological model for each reservoir unit comprising the Yamama Formation revealed to that the formation is composed of alternating reservoirs and barriers. In Subba and Luhais fields the formation began with barrier YB-1 and four more barriers (YB-2, YB-3, YB-4, YB-5), separated five reservoirs (YR-A, YR-B, YR-C, YR-D, YR-E) ranging in thickness from 70 to 80 m for each of them deposited by five sedimentary cycles. In the Ratawi field the formation was divided into three reservoir units (YR-A, YR-B, and YR-C) separated by two barrier units (YB-2 and YB-3), the first cycle is missing in Ratawi field.
The study involves 1 well in Luhais field (Lu-12), 3 wells in Subba field (Su-7, Su-8, and Su-9), and 5 wells in Ratawi fi
... Show MoreReservoir unit classifications can be used in reservoir characterization of carbonate reservoirs where there is variability in the distribution of petrophysical properties. This requires the integration of geological and petrophysical data at different scales. In this study, cores and thin sections from Yamama Formation (Lower Cretaceous) at Gharaf oilfield, southern Iraq, were studiedto identify reservoir units.
Ninereservoir units (units Y1 to Y9) were identified based on petrophysical evaluation by using interactive Petrophysics program (IP) software and depositional environments and related microfacies.The unit Y2 have the highest reservoir quality, which consists of grain-supported facies(packstone a
... Show MoreThe Aaliji Formation in wells (BH.52, BH.90, BH.138, and BH.188) in Bai Hassan Oil Field in Low Folded Zone northern Iraq has been studied to recognize the palaeoenvironment and sequence stratigraphic development. The formation is bounded unconformably with the underlain Shiranish Formation and the overlain Jaddala Formation. The microfacies analysis and the nature of accumulation of both planktonic and benthonic foraminifera indicate the two microfacies associations; where the first one represents deep shelf environment, which is responsible for the deposition of the Planktonic Foraminiferal Lime Wackestone Microfacies and Planktonic Foraminiferal Lime Packstone Microfacies, while the second association represents the deep-sea environme
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope