Weosay thatotheosubmodules A, B ofoan R-module Moare µ-equivalent , AµB ifoand onlyoif <<µand <<µ. Weoshow thatoµ relationois anoequivalent relationoand hasegood behaviorywith respectyto additionmof submodules, homorphismsr, andydirectusums, weaapplyothese resultsotoointroduced theoclassoof H-µ-supplementedomodules. Weosay thatoa module Mmis H-µ-supplementedomodule ifofor everyosubmodule A of M, thereois a directosummand D ofoM suchothat AµD. Variousoproperties ofothese modulesoarepgiven.
Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if (denoted by K F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with hollow, there exists a fully invariant direct summand K of W such that K F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with R - a - hollow, there exists a fully invariant direct summand K o
... Show MoreIn this paper, we introduce the concept of s.p-semisimple module. Let S be a semiradical property, we say that a module M is s.p - semisimple if for every submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K has S. we prove that a module M is s.p - semisimple module if and only if for every submodule A of M, there exists a direct summand B of M such that A = B + C and C has S. Also, we prove that for a module M is s.p - semisimple if and only if for every submodule A of M, there exists an idempotent e ∊ End(M) such that e(M) ≤ A and (1- e)(A) has S.
Let
Background: Cerebral palsy is a disorder of movement and posture resulting from permanent, nonprogressive defect or lesion of the immature brain. Spastic cerebral palsy is a common clinical type which is difficult to diagnose clinically in the early years of life. This study was conducted to identify the changes in the H-reflex excitability in children with spastic cerebral palsy as compared to normal children.
Methods: The excitability of the monosynaptic H-reflex pathway was tested in 36 children with spastic cerebral palsy during waking by calculation of the H-reflex wave amplitude with the ratio of maximal H /maximal M response amplitudes and compared with 32 normal children of the matching age.
The main objective of this research is to study and to introduce a concept of strong fully stable Banach -algebra modules related to an ideal.. Some properties and characterizations of full stability are studied.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreLet M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
Graph is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree are determined.