Background subtraction is the dominant approach in the domain of moving object detection. Lots of research has been done to design or improve background subtraction models. However, there are a few well-known and state-of-the-art models that can be applied as a benchmark. Generally, these models are applied to different dataset benchmarks. Most of the time, choosing an appropriate dataset is challenging due to the lack of dataset availability and the tedious process of creating ground-truth frames for the sake of quantitative evaluation. Therefore, in this article, we collected local video scenes of a street and river taken by a stationary camera, focusing on dynamic background challenges. We presented a new technique for creating ground-truth frames using modeling, composing, tracking, and rendering each frame. Eventually, we applied three promising algorithms used in this domain: GMM, KNN, and ViBe, to our local dataset. Results obtained by quantitative evaluations revealed the effectiveness of our new technique for generating the ground-truth scenes to be benchmarked with the original scenes using a number of statistical metrics.
The Purpose of this research is a comparison between two types of multivariate GARCH models BEKK and DVECH to forecast using financial time series which are the series of daily Iraqi dinar exchange rate with dollar, the global daily of Oil price with dollar and the global daily of gold price with dollar for the period from 01/01/2014 till 01/01/2016.The estimation, testing and forecasting process has been computed through the program RATS. Three time series have been transferred to the three asset returns to get the Stationarity, some tests were conducted including Ljung- Box, Multivariate Q and Multivariate ARCH to Returns Series and Residuals Series for both models with comparison between the estimation and for
... Show MoreThis research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show MoreThis paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
The aim of this work is to study the correlation between the electrons for Li atom in ground state through the calculation of the inter-particle distribution function f (r12) and inter-particle expectation values . By using the f(r12) function for KL shell in both singlet and triplet state .The Fermi hole have been evaluated .In this work the Hartree-Fock wave function (1993) have been used.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreA fully automatic electrothermal atomic emission spectrometry (ETA-AES) is described. This system is based on an echelle monochromator modified for wave¬length modulation which is completely controlled by microcomputer . The advantages of the system in atomic spectrometry have been discussed . Aspects of the analytical performances such as calibration ? dection limit, precision , and recovery for copper are considered . This system is applied for routine determination of copper in commercial powdered mill? by slurr>' atomization versus aqueous atomization techniques.
One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show More