Preferred Language
Articles
/
ijs-3119
The Dynamics of Biological Models with Optimal Harvesting
...Show More Authors

      This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested  function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Dynamics and optimal Harvesting strategy for biological models with Beverton –Holt growth
...Show More Authors

In this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis

View Publication Preview PDF
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Sat May 28 2022
Journal Name
Abstract And Applied Analysis
Discretization Fractional-Order Biological Model with Optimal Harvesting
...Show More Authors

In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.

View Publication
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Harvesting Strategy of a Discretization Fractional-Order Biological Model
...Show More Authors

     Optimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
The Effect of Disease and Harvesting on The Dynamics of Prey-Predator System
...Show More Authors

In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.

View Publication Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Iraqi Journal Of Science
Dynamics and an Optimal Policy for A Discrete Time System with Ricker Growth
...Show More Authors

The goal of this paper is to study dynamic behavior of a sporadic model (prey-predator). All fixed points of the model are found. We set the conditions that required to investigate the local stability of all fixed points. The model is extended to an optimal control model. The Pontryagin's maximum principle is used to achieve the optimal solutions. Finally, numerical simulations have been applied to confirm the theoretical results.

View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Southwest Jiaotong University
The Dynamics of an Eco-Epidemiological Model with Allee Effect and Harvesting in the Predator
...Show More Authors

The aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of

... Show More
Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Dynamics of a Fractional-Order Prey-Predator Model with Fear Effect and Harvesting
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
The Dynamics of Modified Leslie-Gower Predator-Prey Model Under the Influence of Nonlinear Harvesting and Fear Effect
...Show More Authors

A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jul 24 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
The effect of a psychological scare on the dynamics of the tumor-immune interaction with optimal control strategy
...Show More Authors

Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi

... Show More
View Publication
Scopus Crossref
Publication Date
Wed May 26 2021
Journal Name
Communications In Mathematical Biology And Neuroscience
Modelling and stability analysis of the competitional ecological model with harvesting
...Show More Authors

The interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref