Coherent density fluctuation model (CDFM) has been used to calculate the
proton momentum distributions (PMD) and elastic electron scattering form factors,
F(q), of the ground state for some even mass nuclei of fp-shell, such as 52Cr, 58Fe and
64Ni nuclei. Both of the PMD and F(q) have been expressed in terms of the weight
function ( ( ) )
2
f x which is determined by means of the charge density
distributions (CDD) of the nuclei and determined from theory and experiment. The
feature of the long-tail behavior at high momentum region of the PMD’s has been
obtained by both the theoretical and experimental weight functions. The calculated
form factors of these nuclei are in reasonable agreement with those of the
experimental data.
Neutron differential-elastic and inelastic scattering cross-sections of Yttrium-89 isotope were calculated at energies 8,10,12,14, and 17 MeV, at angles distributed between 20o and 180o in the center of mass frame. The obtained results data were interpreted using a spherical optical potential model and Eikonal approximation, to examine the effect of the first-order Eikonal correction on the effective potential. The real and imaginary parts of optical potential were calculated. It was found that the nominal imaginary potential increase monotonically while the effective imaginary one has a pronounced minimum around r = 6fm and then increases. The analysis of the relative energy of the projectile and reaction
... Show MoreThe Harmonic Oscillator (HO) and Gaussian (GS) wave functions within the Binary Cluster Model (BCM) were employed to investigate neutron, proton and matter densities of the ground state as well as the elastic proton form factors of one neutron 8Li and 22N halo nuclei. The long tail is a property that is clearly shown in the neutron density. The existence of a long tail in the neutron densities of 8Li and 22N indicates that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section of these nuclei were calculated using the Glauber model.
In this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m
... Show MoreThe nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.
The ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
Inelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.
The shape for even-even (54Xe 118≤ A ≤ 140 and 82Pb 204 ≤ A ≤ 210 ) nuclei have been studied and investigated through the deformation parameters and δ , these deformation parameters were calculated by two different methods. The first one is nucleus quadrupole deformation parameter β2 from reduced transition probability B(E2)↑ for 0+→2+1 transitions and the second is nucleus quadrupole deformation parameters δ from quadrupole moment Qo.The relationship between two deformation parameters ( , ) and neutrons magic number (N=82 & 126) was studied through plotting the deformation parameters ( , ) as a function of neutrons number , from this relationship we can see very cleary that the deformation of nucleus decreased when th
... Show MoreInelastic magnetic electron scattering M1 at Ex =10.23 MeV form factors in Ca-48 have been investigated. The fp shell model space with four orbits and eight neutrons have been considered and FPD6 has been selected between 32 model space effective interactions to generates the model space vectors for the M1 transition with excitation energy Ex =10.23 MeV and for constructing OBDM. Discarded space (core and higher configuration orbits) has been included through the first order perturbation theory to couple the partice-hole pair of excitation in the calculation of the total M1 form factor and regarding the realistic interaction M3Y as a core polarization interaction with six sets of fitting parameters. Finally the theoretical calculations h
... Show MoreThe two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.
Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV
,
(7.55 )
2
1
2
5
MeV
(15.11 )
2
3
2
3
MeV
states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions