The Nahr Umr Formation is considered one of the main reservoirs produced in southern Iraq. It is one of the important siliciclastic deposits of the Cretaceous sequence of Iraq oilfields. Zubair oil fields ZB-190 and ZB-047 were chosen to study areas. This study depends on the available core and cutting samples to determine the facies analysis, depositional environments, petrographic characteristics and diagenesis processes. Based on the description of the core and the borehole, six types of facies were distinguished in the Nahr Umr Formation, resulting in an intercalated sandstone and shale with a thin layer of siltstone. The petrographic study of the clastic part of the Nahr Umr Formation showed that the sandstone is composed mainly of quartz arenite. Diagenesis processes affecting the Nahr Umr Formation are two types compaction and cementation processes. The sedimentary environment of the Nahr Umr Formation was represented by the deltaic fluvial environments. These environments appear in the central and southwestern parts of the study area. Sequence stratigraphy in the Nahr Umr Formation is beginning by sequence boundary type one (SB1) and sequence boundary type two (SB2) that appeared in the upper part of the formation. The other surfaces were represented by the end of the deposition of the Nahr Umr Formation and the emergence of the transgressive ravinement surface (TRS) within the transgressive system tract (TST)and The maximum flooding surface (MFS) was distinguished in the middle of the formation and each of these surfaces has a lateral extension along the study section.
The Hartha Formation has been investigated from a biostratigraphic view in three subsurface sections in the Nasiriyah Oil field, wells Ns1, Ns3, and Ns4, South of Iraq. Hartha Formation is composed of limestone and has various areas of intense dolomitization alternating with marly limestone. The formation ranges in thickness from 126 to 182 meters. Thirteen large and small benthic foraminifer species and genera are identified from Hartha Formation. Based on the large benthic foraminifer's assemblage, one distinct biozone was recognized after an examination of the paleontological datum in the investigated area showed that the studied wells contained a diversity of foraminiferal species, the larger foraminifers biozone was propose
... Show MoreThe major objective of this paper is to recognize the flow units of Yamama Formation in the west Qurna oil field, south of Iraq. To attain this objective, four wells namely, WQ-23, WQ-148, WQ-60, and WQ-203 are selected and analyzed. The two techniques hat proposed by some scientists to identify flow units are tested and verified. Results are also enhanced using well logs interpretation and the flow areas are proposed through the studying of the behavior of different well logs. Results of applying the two proposed techniques identify six flow reservoir units for the wells WQ-23, WQ-148, WQ-60, and WQ-203, respectively. This study also shows that the flow reservoir properties in the Yamama Formation improved towards the northeast of the W
... Show MoreShuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zone
... Show MoreThe objective of this paper is determining the petrophysical properties of the Mauddud Formation (Albian-Early Turonian) in Ratawi Oil Field depending on the well logs data by using interactive petrophysical software IP (V4.5). We evaluated parameters of available logs that control the reservoir properties of the formation, including shale volume, effective porosity, and water saturation. Mauddud Formation is divided into five units, which are distinguished by various reservoir characteristics. These units are A, B, C, D, and E. Through analyzing results of the computer processed interpretation (CPI) of available wells, we observed that the main reservoir units are B and D, being distinguished by elevated values of eff
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MoreThe current study includes building (CPI) & Petrophysical Evaluation of the Mishrif Formation (Cenomanian-Early Turonian) in Tuba oilfield, southern Iraq by using Interactive Petrophysics Program v3.5 (IP) to evaluate different logs parameters that control the reservoir quality of Mishrif Formation such as shale volume, effective porosity, and water saturation. Mishrif Formation is subdivided into several units, which are characterized by different reservoir properties. These units are Top of Mishrif, MA, CR2, MB1, and MB2.The results of computer processed interpretation (CPI) show that the major reservoir unit are (MB1 and MB2), which are characterized by high effective porosity and oil saturation. In addition, these uni
... Show Morewell log analysis is used to determine the rock properties like porosity, water saturation, and shale volume. Archie parameters in Archie equation, which sometimes considered constants greatly affect the determination of water saturation, also these parameters may be used to indicate whether the rocks are fractured or not so they should be determined. This research involves well logging analysis for Zubair formation in Luhais field which involves the determination of Archie parameters instead of using them as constant.
The log interpretation proved that the formation is hydrocarbon reservoir, as it could be concluded from Rwa (high values) and water saturation values (low values), the lithology of Zubair from cro
... Show MoreWellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
Reservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show MoreSix main microfacies are identified which are Lime Mudstone, Bioclastic Wackeston, Bioclastic Packstone-Wackestone, Bioclastic Wackestone- Mudestone, Pelagic Mudstone–Wackestone, Bioclastic Packstone -Grainston Microfacies in addition to their associated depositional environment. The diagenesis process have affected the Mishrif rocks and played a role in deteriorating reservoir porosity in well Ga-2 and enhancing it in well Ga1,3.These processes include: cementation, micritization, recrystallization,dissolution,compaction pressure solution and dolomitization.