The dramatic decrease in the cost of genome sequencing over the last two decades has led to an abundance of genomic data. This data has been used in research related to the discovery of genetic diseases and the production of medicines. At the same time, the huge space for storing the genome (2–3 GB) has led to it being considered one of the most important sources of big data, which has prompted research centers concerned with genetic research to take advantage of the cloud and its services in storing and managing this data. The cloud is a shared storage environment, which makes data stored in it vulnerable to unwanted tampering or disclosure. This leads to serious concerns about securing such data from tampering and unauthorized searches by those involved. In addition to securing inquiries, making calculations on this data, and generating differential privacy and garbled circuits, cryptography is considered one of the important solutions to this problem. This paper introduces most of the important challenges related to maintaining privacy and security and classifies each problem with appropriate, proposed, or applied solutions that will fuel researchers' future interest in developing more effective privacy-preserving methods for genomic data.
This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurement
... Show More<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive numbe
... Show MoreDue to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
سعي المجتمع العراقي منذ أكثر من نصف قرن مضى لإعادة استثمار عشرات المليارات من الدولارات من الإيرادات النفطية في القطاع الزراعي وهياكله وبنياته التحية، كإنشاء السدود والخزانات المائية واستصلاح الأراضي والمشاريع الإنتاجية الحيوانية والنباتية وبطاقات كادت تقترب او تتجاوز حاجز طلب السكان من الأغذية والمنتوجات الزراعية التي تغذي الصناعة الا ان الزيادة السكانية وتحسن مستوى الدخل النفطي شكلا انتقالا جدي
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible parametric models and these models were nonparametric, many researchers, are interested in the study of the function of permanence and its estimation methods, one of these non-parametric methods.
For work of purpose statistical inference parameters around the statistical distribution for life times which censored data , on the experimental section of this thesis has been the comparison of non-parametric methods of permanence function, the existence
... Show MoreGivers of foreign Audit about Social Responsibility of Profit Organization. The recent time is charcterstically with big economic Organization activities, because there are many transactions between these Organizations and different financial markets development techniques.
This encourgage business men to increase their efforts for investment in these markets. Because the Accounting is in general terms it represents a language of these Unions Activities and translate them in to fact numbers, for that there is need for Accounting recording for certain of these Organizations behavior and their harmonization with their Objectives.
In this respect the Audit function comes to che
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show More