Response surface methodology (RSM) based on central composite design was successfully applied to redesign MRS media for maximizing both biomass and bacteriocin production from Lactobacillus plantarum NH40. First, glucose and yeast extract were chosen as the best carbon and nitrogen sources based on classical optimization results of one factor at time which also revealed the possibility of eliminating peptone and meat extract from the original composition of medium without affecting the growth and bacteriocin production. Statistical experimental design based on a regression model generated using the Design expert 7 software showed that the optimum concentrations of glucose, yeast extract, tween80, NH4Cr, CH3COONa and K2PO4 were 40, 19.9, 1, 3.06, 7, 1.25 g/L respectively for maximum production of biomass (15.87 mg/mL) and bacteriocin (634.74 U/mL). In addition, from the analysis of variance, yeast extract with F-value 77.2 and glucose with 185.4 were the most effective factors on biomass and bacteriocin production. Formulation of empirical model explained that the interaction among factors showed that the determination coefficient R2 of biomass and bacteriocin production were 0.8777 and 0.8539 respectively. Furthermore, the accuracy of model of the optimized MRS medium suggested by design expert 7 for both biomass and bacteriocin was verified and results showed that concentrations of biomass and bacteriocin were 15 mg/mL and 640AU/mL respectively, which were approximately closed to predicted values.
In the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreThe road transportation system is considered as major component of the infrastructure in any country, it affects the developments in economy and social activities. The Asphalt Concrete which is considered as the major pavement material for the road transportation system in Baghdad is subjected to continuous deterioration with time due to traffic loading and environmental conditions, it was felt that implementing a comprehensive pavement maintenance management system (PMMS), which should be capable for preserving the functional and structural conditions of pavement layers, is essential. This work presents the development of PMMS with Visual inspection technique for evaluating the Asphalt Concrete pavement surface condition; common types o
... Show MoreThis researd exhibit's a method to determine the change in Gibbs function,(enthai py,entropy. and specific heat capacity) tor monovariant heterogeneous equilibria .The thermodynamical quan.tities were obtained jndirectly with m the measurment of temperature dependent on eql,lilibrium system.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreConservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.
This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.
Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est
... Show MoreThe most important environmental constraints at the present time
is the accumulation of glass waste (transparent glass bottles). A lot of
experiments and research have been made on waste and recycling
glass to get use it as much as possible. This research using recycling
of locally waste colorless glass to turn them into raw materials as
alternative of certain percentages of cement to save the environment
from glass waste and reduce some of the disadvantages of cement
with conserving the mechanical and physical properties of concrete
made. A set of required samples were prepared for mechanical test
with different weight percentage of waste glass (2%, 4%, 5%, 6%,
8%, 10%, 15%, 20% and 25%). American standard