A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
It is very well known in the planning publications that when creating spacing development to a region or sub-region, it can be able to make more than an alternative consisting with the strategic directions overtaken from the actual development of region and the situational and developmental objectives needed. However, the difficulty facing the situational planning is in selecting one of these alternatives to be the best in order to make a balanced situational re-structure, and achieving the economic, social and civil objectives. The developmental situation elements in the regions and governorates, including (Karbala) impose themselves as situational power which implies the process of re-structural arrangement where the situational develo
... Show MoreText documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the te
... Show MoreThe aim of this paper is to discuss the influence of nanoparticles and porous media, and magnetic field on the peristaltic flow transport of a couple stress fluid in an asymmetric channel with different wave forms of non-Newtonian fluid. Initially, mathematical modeling of the two dimensions and two directional flows of a couple stress fluid with a nanofluid is first given and then simplified beneath hypothesis of the long wave length and the low Reynolds number approximation. After making these approximations, we will obtain associated nonlinear differential equations. Then, the exact solutions of the temperature distribution, nanoparticle concentration, velocity, stream function, and pressure gradient will be calculated. Fin
... Show MoreObjective : The study was carried out to construct an initial assessment documentation tool for nursing
recording system in Coronary Care Unit.
Methodology : A descriptive, purposive sample of (65) nurses was selected from CCU of main
teaching hospitals (Al Karama, Al Kindy, Al Kadimia, Al Yarmmok, Baghdad teaching hospital, Ibn
Al Naffis hospital) and Ibn-Al betar hospital in Baghdad city from the 15th of April 2004 to the 15th of
April 2006.
The instrument was constructed and comprised of two sections: section one included the
nurses' demographic characteristic; section two was the initial assessment documentation tool that
contained (2) parts including: General information form and the initial assessment form.
As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreCyber security is a term utilized for describing a collection of technologies, procedures, and practices that try protecting an online environment of a user or an organization. For medical images among most important and delicate data kinds in computer systems, the medical reasons require that all patient data, including images, be encrypted before being transferred over computer networks by healthcare companies. This paper presents a new direction of the encryption method research by encrypting the image based on the domain of the feature extracted to generate a key for the encryption process. The encryption process is started by applying edges detection. After dividing the bits of the edge image into (3×3) windows, the diffusions
... Show MoreIn the current study, 2D seismic data in west An-Najaf (WN-36 line) were received after many steps of processing by Oil Exploration Company in 2018. Surface Consistent Amplitude Compensation (SCAC) was applied on the seismic data. The processing sequence in our study started by sorting data in a common mid-point (CMP) gather, in order to apply the velocity analysis using Interactive Velocity Analysis Application (INVA) with Omega system. Semblance of velocity was prepared to preform normal move-out (NMO) vs. Time. Accurate root mean square velocity (VRMS) was selected, which was controlled by flatness of the primary events. The resultant seismic velocity section for the study area shows that the veloci
... Show MoreThe main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show More