The aim of this paper is to discuss the influence of nanoparticles and porous media, and magnetic field on the peristaltic flow transport of a couple stress fluid in an asymmetric channel with different wave forms of non-Newtonian fluid. Initially, mathematical modeling of the two dimensions and two directional flows of a couple stress fluid with a nanofluid is first given and then simplified beneath hypothesis of the long wave length and the low Reynolds number approximation. After making these approximations, we will obtain associated nonlinear differential equations. Then, the exact solutions of the temperature distribution, nanoparticle concentration, velocity, stream function, and pressure gradient will be calculated. Finally, the results of drawings for many physical parameters that are of importance for examining the behavior of fluid flow quantities are discussed.
The purpose behind this paper is to discuss nanoparticles effect, porous media, radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic flow in a channel type that is asymmetric. Under a long wavelength and the approaches of low Reynolds number, the governing nanofluid equations are first formulated and then simplified. Associated nonlinear differential equations will be obtained after making these approximations. Then the concentration of nanoparticle exact solution, temperature distribution, stream function, and pressure gradient will be calculated. Eventually, the obtained results will be illustrated graphically via MATHEMATICA software.
In this paper, we study the effects of a magnetic force on the flow of hybrid bio - nano fluid (Cu - Au. NPs) for a peristaltic channel through a porous medium in an asymmetric channel. Nanoparticles of gold and copper as well as the blood (the base fluid) is taken into account. By using the Adomian decomposition method to solve the governing equations, formulas for velocity, stream function, temperature, current density, and magnetic force have been obtained. The findings show that Gold nanoparticles have an elevation magnetic force compared with copper nanoparticles, based on fluid (blood) and hybrid nanofluid. Finally, the phenomenon of trapping is offered as an explanation for the physical behavior of many parameters. The ef
... Show MoreThis paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
In this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number†these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile we
... Show MoreIn this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a
... Show MoreIn this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreIn this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.
This paper concerns the peristaltic flow of a Williamson fluid with variable viscosity model through porous medium under combined effects of MHD and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity and stream function have been studied.
This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.
In this paper we present a study on Peristaltic of fractional generalized Maxwell viscoelastic fluid through a porous medium. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a porous medium in an inclined channel with slip effect. The governing equation is simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, permeability parameter, Froude number, Reynolds number and inclination of channel on
... Show More