A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe
... Show MoreIn this paper, the complexes of Shiff base of Methyl -6-[2-(diphenylmethylene)amino)-2-(4-hydroxyphenyl)acetamido]-2,2-dimethyl-5-oxo-1-thia-4-azabicyclo[3.2.0]heptane-3-carboxylate (L) with Cobalt(II), Nickel(II), Cupper(II) and Zinc(II) have been prepared. The compounds have been characterized by different means such as FT-IR, UV-Vis, magnetic moment, elemental microanalyses (C.H.N), atomic absorption, and molar conductance. It is obvious when looking at the spectral study that the overall complexes obtained as monomeric structure as well as the metals center moieties are two-coordinated with octahedral geometry excepting Co complexes that existed as a tetrahedral geometry. Hyper Chem-8.0.7
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreThe idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw
... Show MoreData mining is a data analysis process using software to find certain patterns or rules in a large amount of data, which is expected to provide knowledge to support decisions. However, missing value in data mining often leads to a loss of information. The purpose of this study is to improve the performance of data classification with missing values, precisely and accurately. The test method is carried out using the Car Evaluation dataset from the UCI Machine Learning Repository. RStudio and RapidMiner tools were used for testing the algorithm. This study will result in a data analysis of the tested parameters to measure the performance of the algorithm. Using test variations: performance at C5.0, C4.5, and k-NN at 0% missi
... Show MoreMobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10
... Show More