A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreThe aim of this study is to identify the effect of enabling the effectiveness of the work of the audit committees in private commercial banks and to identify the extent of awareness of the importance of empowerment in the work of these committees, especially as it is known that these committees, especially the inspection committees that go to private banks and from various sources including committees of the Central Bank of Iraq Committees of the Securities Commission and finally committees of the external audit offices, through an analysis of the determinants of empowerment in the performance of the most important work of the audit committees, namely: supervising the process of preparing reports, supervising the system of intern
... Show MoreSatire is genre of the literary arts that has always been the source of human interest. Because it is difficult to accept direct criticism, Satire appears as a literary tool in which vices, follies, abuses and shortcomings are held up to ridicule, with the intent of shaming individuals, corporations, government, or society itself into improvement. A satirical critic usually employs irony to attain this goal. Although satire is usually meant to be humorous, its greater purpose is often profitable social criticism, using wit to draw at
... Show MoreThe science of jurisprudence is one of the legal sciences that scholars have been interested in since the first centuries of Islam, and they wrote many books about it, and the science of manuscripts is considered one of the scientific achievements in which many scholars emerged, including Imam Al-Samaani, so I chose this manuscript related to Istism to clarify its concept and meaning for all people, The student (Ali Ahmed Abdel-Aziz Sheikh Hamad) preceded me in the investigation of part of the book, and it was facilitated for me, by the grace of God Almighty, to investigate the issue (if one of the Muslim spouses apostatized and one of the infidel spouses converted to Islam until the end of the issue of if the two spouses were taken capt
... Show MoreA topological index, commonly referred to as a connectivity index, is a molecular structural descriptor that describes a chemical compound's topology. Topological indices are a major topic in graph theory. In this paper, we first define a new graph, which is a concept from the coronavirus, called a corona graph, and then we give some theoretical results for the Wiener and the hyper Wiener index of a graph, according to ( the number of pairs of vertices (u, v) of G that are at a distance . Moreover, calculate some topological indices degree-based, such as the first and second Zagreb index, , and index, and first and second Gourava index for the recent graph. In addition, we introduced a new topological index, the , w
... Show MoreAbstract
Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.
CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva
... Show MoreFuzzy measures are considered important tools to solve many environmental problems. Water pollution is one of the environmental problems, which has negatively effect on the health of consumers. In this paper, a mathematical model is proposed to evaluate water quality in the distribution networks of Baghdad city. Fuzzy logic and fuzzy measures have been applied to evaluate water quality with respect to chemical and microbiological contaminants. Our results are evaluate water pollution of some chemical and microbiological contaminants, which are difficult to evaluation through traditional methods.
Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes
... Show MoreIt is very known how great is the role of the Jewish writers in the system of the Zionist movement. The movement relied on writers and writers to carry out their programs, especially those pertaining to the creation of a "national homeland" for Jews. Most Jewish writers sang of Palestine even though they were not born there.
On such a basis, we have followed closely the writings of writers, critics and others by the end of the nineteenth century and the beginning of the twentieth century. We found that these writings are based on one common question: What is the fate of the Jewish people?
Most of these writings were accompanied by Theodor Herzl's proj
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More