Preferred Language
Articles
/
ijs-6917
Influence of MHD and Porous Media on Peristaltic Transport for Nanofluids in An Asymmetric Channel

     The aim of this  paper is to discuss the influence of nanoparticles and porous media, and magnetic field on the peristaltic flow transport of a couple stress fluid in an asymmetric channel with different wave forms of non-Newtonian fluid. Initially, mathematical modeling of the two dimensions and two directional flows of a couple stress fluid with a nanofluid is first given and then simplified beneath hypothesis of the long wave length and the low Reynolds number approximation. After making these approximations, we will obtain associated nonlinear differential equations. Then, the exact solutions of the temperature distribution, nanoparticle concentration, velocity, stream function, and pressure gradient will be calculated. Finally, the results of drawings for many physical parameters that are of importance for examining the behavior of fluid flow quantities are discussed.

Crossref
View Publication
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Influence of Heat Transfer on MHD Oscillatory Flow for Eyring-Powell Fluid through a Porous Medium with Varying Temperature and Concentration

The aim of this research is to study the effect of heat transfer on the oscillating flow of the hydrodynamics magnetizing Eyring-Powell fluid through a porous medium under the influence of temperature and concentration for two types of engineering conditions "Poiseuille flow and Couette flow". We used the perturbation method to obtain a clear formula for fluid motion. The results obtained are illustrated by graphs.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
Temperature and Concentration Effects on Oscillatory Flow for Variable Viscosity Carreau Fluid through an Inclined Porous Channel

The aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
Peristaltic Transport of Power-Law Fluid in an Elastic Tapered Tube with Variable Cross-Section Induced by Dilating Peristaltic Wave

The peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of  whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient.  Finally, trapping p

... Show More
Scopus (6)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip conditions

This paper studies the influence of an inclined magnetic field on peristaltic transport of incompressible Bingham plastic fluid in an inclined symmetric channel with heat transfer and mass transfer. Slip conditions for heat transfer and concentration are employed. The formulation of the problem is presented through, the regular perturbation technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effe

... Show More
Scopus (11)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
“Impress of rotation and an inclined MHD on waveform motion of the non-Newtonian fluid through porous canal”
Abstract<p>Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a</p> ... Show More
Scopus (8)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Influence of Inclined MHD on Unsteady Flow of Generalized Maxwell Fluid with Fractional Derivative between Two Inclined Coaxial Cylinders through a Porous Medium

"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
The Influence of the Preparation and Stability of Nanofluids for Heat Transfer

Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: cha

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Influence of Thermal Radiation and MHD on the Boundary Layer Flow Due to an Exponentially Stretching Sheet

In this paper, the effect of thermal radiation and magnetic field on the boundary layer flow and heat transfer of a viscous fluid due to an exponentially stretching sheet is proposed. The governing boundary layer equations are reduced to a system of ordinary differential equations. The homotopy analysis method (HAM) is employed to solve the velocity and temperature equations.

View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Heat Transfer Analysis and Magnetohydrodynamics Effect on Peristaltic Transport of Ree–Eyring Fluid in Rotating Frame

This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.

Scopus (5)
Scopus Crossref
View Publication Preview PDF