In this paper, we introduce the notation of the soft bornological group to solve the problem of boundedness for the soft group. We combine soft set theory with bornology space to produce a new structure which is called soft bornological group. So that both the product and inverse maps are soft bounded. As well as, we study the actions of the soft bornological group on the soft bornological sets. The aim soft bornological set is to partition into orbital classes by acting soft bornological group on the soft bornological set. In addition, we explain the centralizer, normalizer, and stabilizer in details. The main important results are to prove that the product of soft bornological groups is soft bornological group and the action for different elements are the same actions.
In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
Smear zone is usually formed around the prefabricated vertical drains (PVD’s) due to mandrel driving. The geotechnical properties of the soil in this zone exhibit significant changes that affect the performance of the PVD’s. The most relevant property in this respect is the coefficient of permeability. So far, no serious attention is paid to investigate the effects of shearing under large shear strains on the geotechnical properties of the soft soil in Fao region. In this study, an extensive laboratory testing program was conducted to assess the characteristics of the smear zone with an emphasis on the permeability coefficient of Fao soft soil. The results show that the permeability of the smear zone is about 70% of
... Show MoreLet R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÃN such that annR(N)=annR(x).
In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.
Moreover, some relations between almost bounded submodules and other types of modules are considered.
Every finite dimensional normed algebra is isomorphic to the finite direct product of or , it is also proved these algebras are ultrasemiprime algebras. In this paper, the ultrasemiprime proof of the finite direct product of and is generalized to the finite direct product of any ultrasemiprime algebras.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Our aim in this work is to investigate prime submodules and prove some properties of them. We study the relations between prime submodules of a given module and the extension of prime submodules. The relations between prime submodules of two given modules and the prime submodules in the direct product of their quotient module are studied and investigated.