In this work, one configuration was used to study the electrical discharge resulting from the dielectric barrier. This configuration consists of a sheet of epoxy/Al composite with dimensions of 75 mm in length, 25 mm in width, and 3 mm in thickness. This panel is located at the center of the electrodes, so that the distance between each of the electrodes and the plate is 2 mm and plasma is generated at these distances. The relationship between voltage and current with changing the frequency of the equipment as well as changing the area of exposure to the upper electrode or changing its length has been studied. The length of the top electrode varies at 0, 10, 20, 30, and 40 mm from the center of the electrodes producing exposure areas of 1875, 1625, 1375, 1125, 875, and 625 mm2, respectively. Two frequencies of 8 and 9 kHz were applied in this work. The results showed that the discharge current increases linearly with the applied input voltage and with the decrease of the exposure of the upper electrode. Then, the current increases with the stability of the voltage in varying proportions depending on the exposure area and frequency. The plasma generated from this modulation was diagnosed with the exposure area and the fitted frequency. Electron temperature and electron density are calculated using the optical emission spectroscopy technique by Boltzmann and Lorenz, respectively. It can be seen that the temperature, electron density, and plasma frequency increase with the decrease of the exposure area, while the Debye length shows the opposite behavior and this is clear in this formation and high effectiveness at Diagnosis and Reason This formation will be adopted in the surface treatment of the aluminum epoxy compound.
This work is an experimental study about the effects of gas pressure and magnetic field on plasma characteristics produced in an internal hollow electrodes discharge (HED) system. The results show that the breakdown voltage values increase with increasing the working pressure (especially with the presence of a magnetic field). The breakdown voltage depends on the p.d. product, where p is the gas pressure and d is the distance between the electrodes. While the values of current discharge decrease with the increase of the working pressure. The temperature of electron and the number density of electron are calculated from the Boltzmann method and the broadening of Stark, respectively. The results showed that the electron number d
... Show MoreThe influence of ambient temperature on the various parameters of negative corona discharge in atmospheric dry air with coaxial cylindrical electrodes is investigated. The calculations are achieved using the finite element method by COMSOL Multiphysics software. The investigation aims to notice the effect many of working temperatures on the I-V characteristic curve of negative corona discharge in the air. The calculations of several parameters (electron density, temperature, ...) are presented visually and discussed. The results of the work are compared with theoretical and experimental data and they are in a good agreement.
This study is a numerical analysis of the transition process from the second to the third mode in transformer oil. In this study, it was determined how to change from the second to the third mode, which is thought to be a precursor to the process of electrical breakdown, which results in a significant loss of electrical energy and harm to electrical devices and equipment. The initiation time, length, rate of propagation velocity, and radius of the streamer discharge were determined. The transition from the second to the third mode during the electrical discharge process may lead to the occurrence of an electrical breakdown, which is one of the greatest challenges facing scientists and engineers who deal with the
... Show MoreIn this paper, a numerical analysis was carried out using finite element method to analyse the mechanisms for streamer discharges. The hydrodynamic model was used with three charge carriers equations (positive ion, negative ion and electron) coupled with Poisson equation to simulate the dynamic of streamer discharge formation and propagation. The model was tested within a 2D axisymmetric tip-plate electrodes configuration using the transformer oil as the dielectric liquid. The distance between the electrodes was fixed at 1 mm and the applied voltage was 130 kV at 46 ns rising time. Simulation results showed that the time has a clear effect on the streamer propagation along the symmetry axis. In addition, it was observed that t
... Show MoreFemtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying
... Show MoreLength of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
This work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreThis study shows the effects of copper material electrode, applied voltage, and different pressure values on electrical discharge plasma. The purpose of the work is the application of the spectral analysis method to obtain accurate results of nitrogen plasma parameters. By using the optical emission spectroscopy (OES), many N2 molecular spectra peaks appeared in the range from 300 to 480 nm. Also, some additional peaks were recorded, corresponding to atomic and ionic lines for nitrogen, target material, and hydrogen, in all samples. The electron density (ne) was calculated from the measurement of Stark broadening effect, which was found to decrease with increasing pressure from 0.1 mba
... Show MoreThe calcination treatments and a binder of poly acrylic acid PAA (1wt%)
effects on kaolinite particles were investigated through dielectric properties at
1MHz ,quantitative analysis of X-ray diffraction and microstructure. The calcinated
samples at 850°C/3hr and fired at 1350°C/2hr were revealed decrease in broadening
(Full Width at half maximum) FWHM and increase of dielectric constant.
Twelve storm dust samples were collected from three cities in Iraq. The samples were collected in the same time during big storms which hit Iraq in summer, 2012 and 2013. The deposited dust on 4 by 4 nylon sheet on surfaces of selected buildings in cities of Baghdad, Fallujah and Al-Ramadi were collected. Each sample was put in sealed Marinilli beaker and kept for 4 weeks to reach the equilibrium state between radium and its short half-life daughters. Gamma spectrometry system based on HPGe was used for analysis of natural and artificial radionuclides in the dust. The activities of natural radionuclides were found to be ranged between 13-19 Bq/kg, 9-14 Bq/kg and 200-240 Bq/kg for Ra-226, Th-232 and K-40 respectively, while Cs-137 w
... Show More