Preferred Language
Articles
/
ijs-5877
The Numerical Analysis for Electrical Streamer Discharge Behaviour in Transformer Oil

      In this paper, a numerical analysis was carried out using finite element method to analyse the mechanisms for streamer discharges. The hydrodynamic model was used with three charge carriers equations (positive ion, negative ion and electron) coupled with Poisson equation to simulate the dynamic of streamer discharge formation and propagation. The model was tested within a 2D axisymmetric tip-plate electrodes configuration using the transformer oil as the dielectric liquid. The distance between the electrodes was fixed at 1 mm and the applied voltage was 130 kV at 46 ns rising time. Simulation results showed that the time has a clear effect on the streamer propagation along the symmetry axis. In addition, it was observed that the highest value of the voltage was recorded at 46 ns and the minimum voltage required for insulation breakdown was 112 kV at 200 ns. It was revealed that the streamer velocity recorded the highest value when the streamer reaches the plate electrode and the lowest value when the streamer begins to propagate. Results also showed that the streamer discharge was dominated by positive ions while the negative ions have a low effect.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Numerical Analysis for Streamer Discharge at the Discharge Transition from the Second to the Third Mode in Transformers Oil

     This study is a numerical analysis of the transition process from the second to the third mode in transformer oil. In this study, it was determined how to change from the second to the third mode, which is thought to be a precursor to the process of electrical breakdown, which results in a significant loss of electrical energy and harm to electrical devices and equipment. The initiation time, length, rate of propagation velocity, and radius of the streamer discharge were determined. The transition from the second to the third mode during the electrical discharge process may lead to the occurrence of an electrical breakdown, which is one of the greatest challenges facing scientists and engineers who deal with the

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Surface Plasmon Resonance (SPR)-Based Multimode Optical Fiber Sensors for Electrical Transformer Oil Aging Detection

I

In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
The Streamer Discharge Propagation Within Normal Hexane and Acetone Liquids

Based on the streamer growth model, the streamer discharge propagation was simulated in aid of finite element technique. That was done within two non- mixed dielectric liquids (Normal-Hexane and Acetone) located between two electrodes in pin - plane configuration. The output results show that, the path of the streamer was affected by the interface between the two liquids; the streamer path crosses this interface under some conditions such as the permittivity of the liquids and the distance between this interface and the tip of the pin. Under other conditions, the streamer path grows along the interface. The results were assisted by the development of the potential and the electric field distributions with the growth of the streamer propa

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Townsend Discharge and Streamer Breakdown within Sphere-Air-Sphere Configuration

     The main aim of the present paper is to study the electric breakdown in a uniform electric discharge system. The system consists of two spheres separated by a dielectric. The dielectric is dry air. Certain boundary conditions are taken into consideration as applied voltage, pressure, and domain. The formation of discharge types as Townsend and streamer under different distance gaps (1, 0.9,0.8, 0.6, 0.4, 0.2, 0.1) mm was sudied. The temperature effect on the breakdown voltages for the discharge process is also included. Seven different temperature steps are chosen in the study.  Comsol Multiphysics software is used for the simulation model as a plasma model. Results show that as the gap distance increases the breakdown voltage

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Negative Streamer Propagation in Nitrogen

       For the development of negative streamer, a one dimension simulation is presented when a negative electric field is applied at atmospheric pressure to a 4 mm gap in nitrogen. At applied electric fields of 55, 60, 65 and 70 kV/cm, streamer parameters were studied at various time intervals. The aim of this paper is to determine the minimum electric field that must be applied for stable propagation of negative streamer discharge in nitrogen gas. As functions of position and time, the calculations provide detailed electron and ion density predictions, electric fields and density of space charges. The time interval was with a nanosecond resolution. Using 8000 element mesh to resolve the characteristics of the streamer, spatial re

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 15 2018
Journal Name
Strojniški Vestnik - Journal Of Mechanical Engineering
Comparative Experimental and Numerical Investigation on Electrical Discharge Drilling of AISI 304 using Circular and Elliptical Electrodes

This work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an

... Show More
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Parametric Analysis of Surface Roughness and Metal Removal Rate during Electrical Discharge Machining of O1 Tool Steel

This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by sur

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Impedance Characteristics of Pulsed Atmospheric Electrical Discharge in Spherical Plasma Switch

A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The dur

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 10 2022
Journal Name
Iraqi Journal Of Science
Experimental Study of Pulsed Electrical Discharge in Cylindrically-Tipped of Plasma Switch

In this research pulse high voltage circuit was used including resistance,
inductance and capacitor to achieve an experiment of cylindrically-tipped of plasma
switch .The charging voltage of up to 9kV using Rogowski coil and current-shunt
resistance (CVR) used to measure pulsed electrical discharge (PED). The current in
both self-triggering and third-electrode triggering modes. The pulsed current peaks
4kA and the duration of circuit pulses were recorded between 0.1μs and 0.3μs. The
experimental results has shown clearly the inductance effect in the circuit parts in
under damped oscillation regarding the value of circuit parts in addition to the
distance of the spark gap cylindrically-tipped electrodes during th

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Spectral Analysis of the Effects of Variation in Electrodes' Area for Dielectric Barrier Discharge Actuator

     In this work, one configuration was used to study the electrical discharge resulting from the dielectric barrier. This configuration consists of a sheet of epoxy/Al composite with dimensions of 75 mm in length, 25 mm in width, and 3 mm in thickness. This panel is located at the center of the electrodes, so that the distance between each of the electrodes and the plate is 2 mm and plasma is generated at these distances. The relationship between voltage and current with changing the frequency of the equipment as well as changing the area of ​​exposure to the upper electrode or changing its length has been studied. The length of the top electrode varies at 0, 10, 20, 30, and 40 mm from the center of the electrodes producing exp

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF