This study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases. Medical images of different cases of kidney diseases were compared with those of healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected parts were isolated from the healthy parts. To isolate the kidney from the other anatomical parts in a CT image, a mask must be generated, which is a binary image (0s or 1s). This mask was also utilized to remove undesired characteristics from the images. Density slicing was utilized to color the image based on its texture density. A slice is considered a band of neighboring gray levels in a gray scale image seen through monocular color. The gray scale band of (0-255) is transformed into a variety of color slices; it is the conversion of a gray scale image to a colored image that efficiently displays symmetric and diverse regions. Density slicing is a property process for segmentation. The unsupervised classification process, the K-Mean clustering, is used the application of K-mean on C.T. images to detect and classify the type of tumor in the kidney. The K-mean clustering separates each class depending on the texture properties and the distance from each class and color. This method of segmentation was used to separate the affected part from the healthy part of the tissue; the K-mean with Co-occurrence matrices gives statistical properties such as energy, homogeneity, contrast, and correlation. These give an indication of the nature of the tissues that are different in density. The standard deviation for the cancer was higher than the stone, so was the mean, the contrast and the correlation. This means that the texture of the cancer was brighter and has a none of grey level more than the stone and this can be seen from the energy value; the texture of the cancer was highly correlated. This method proved to be a good method for the early diagnosis.
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreThe nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form
... Show MoreThe security of multimedia data becoming important spatial data of monitoring systems that contain videos prone to attack or escape via the internet, so to protect these videos used proposed method combined between encryption algorithm and sign algorithm to get on authenticated video. The proposed encryption algorithm applied to secure the video transmission by encrypt it to become unclear. This done by extract video to frames and each frame separate to three frames are Red, Green, and Blue, this frames encrypt by using three different random keys that generated by a function for generating random numbers, as for sign algorithm applied for authentication purpose that enable the receiver from sure of the identity of the sender and provide
... Show MoreIn this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some exam
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.
In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
Multivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data. This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor ( −