Preferred Language
Articles
/
ijs-6604
Prediction of Well Logs Data and Estimation of Petrophysical Parameters of Mishrif Formation, Nasiriya Field, South of Iraq Using Artificial Neural Network (ANN)
...Show More Authors

    Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was abandoned. This paper presents a solution to estimate the missing open-hole logs of Mishrif Formation including sonic, neutron, density and deep resistivity using supervised Artificial Neural Network (ANN) in Petrel software (2016.2). Furthermore, the original gamma-ray log along with the predicted logs data from ANN models were processed, and the petrophysical properties including volume of shale, effective porosity and water saturation were calculated to determine the hydrocarbon zones. The ANN Mishrif Formation models recorded coefficient of determination (R2) of 0.65, 0.77, 0.82, and 0.04 between the predicted and the tested logs data with total correlations of 0.67, 0.91, 0.84 and 0.57 for sonic, neutron, density, and resistivity logs respectively. The best possible hydrocarbon-bearing zone ranges from the depth of about 1980-2030 m in the mB1unit. The ANN provides a good accuracy and data matching in clean and non-heterogeneous formations compared to those with higher heterogeneity that contain more than one type of lithology. The Ns-X Well can, therefore, be linked to the development plans of the Nasiriya Field instead of neglect it.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Structural interpretation of 2D seismic reflection data of the Khabour Formation in the Upper West Euphrates, western Iraq
...Show More Authors

     The seismic reflection method has a primary role in petroleum exploration. This research is a structural interpretation study of the 2D seismic reflection survey carried out in the Upper West Euphrates (Khan Al-Baghdadi area), which is located in the western part of Iraq, Al-Anbar governorate. The two objectives of this research are to interpret Base Akkas/Top Khabour reflector and to define potential hydrocarbon traps in the surveyed area. Based on the synthetic seismogram of Akk_3 well near the study area, the Akkas/Top Khabour reflector was identified on the seismic section. Also, the Silurian Akkas Hot_shale reflector was identified and followed up, which represents the source and seal rocks of the Paleozoic

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Optimal Dimensions of Small Hydraulic Structure Cutoffs Using Coupled Genetic Algorithm and ANN Model
...Show More Authors

A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Sun Dec 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Evaluation of Acid and Hydraulic Fracturing Treatment in Halfaya Oil Field-Sadi Formation
...Show More Authors

Sadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.

Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.

   In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.

   The reservoir damage severity has been taken as "Shallow–Medium– Sever

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 01 2003
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
OCCURRENCE OF SOME FISH PARASITES IN AL-MADAEN DRAINAGE NETWORK, SOUTH OF BAGHDAD
...Show More Authors

Seven fish species were collected from the drainage network at Al-Madaen region, south of
Baghdad with the aid of a cast net during the period from March to August 1993. These fishes
were infected with 22 parasite species (seven sporozoans, three ciliated protozoans, seven
monogeneans, two nematodes, one acanthocephalan and two crustaceans) and one fungus
species. Among such parasites, Chloromyxum wardi and Cystidicola sp. are reported here for
the first time in Iraq. In addition, 11 new host records are added to the list of parasites of
fishes of Iraq.

View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
International Journal Of Transportation Engineering And Traffic System, Ijtets
Comparative Modeling of Pavement Surface Texture Variables Using ANN and SPSS Software
...Show More Authors

The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Stratigraphic and Structural Study of Khlesia Region Using 2D Seismic Data - North Western Iraq
...Show More Authors

     This study deals with interpretation of stratigraphic and structural of Khlesia area north-west Iraq in Nineveh province, near the Iraq- Syria border, by using 2D seismic data. Synthetic trace are prepared by using available data of the well (Kh-1) using Geoframe program to define and picking the reflectors on seismic section. These reflectors are: (Within Fatha and Kurra Chine reflectors) representing  Middle Miocene and Late Triassic ages respectively. A listric growth normal fault is affecting the stratigraphic succession, and normal fault as a result of collision of Arabian plate with Eurasian plate. In addition, minor normal faults (Dendritic and Tension) are developed on the listric normal growth fault

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon May 01 2023
Journal Name
Materials Today: Proceedings
An experimental study of the effects of matrix acidising on the petrophysical characteristics of carbonate formation
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref