Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was abandoned. This paper presents a solution to estimate the missing open-hole logs of Mishrif Formation including sonic, neutron, density and deep resistivity using supervised Artificial Neural Network (ANN) in Petrel software (2016.2). Furthermore, the original gamma-ray log along with the predicted logs data from ANN models were processed, and the petrophysical properties including volume of shale, effective porosity and water saturation were calculated to determine the hydrocarbon zones. The ANN Mishrif Formation models recorded coefficient of determination (R2) of 0.65, 0.77, 0.82, and 0.04 between the predicted and the tested logs data with total correlations of 0.67, 0.91, 0.84 and 0.57 for sonic, neutron, density, and resistivity logs respectively. The best possible hydrocarbon-bearing zone ranges from the depth of about 1980-2030 m in the mB1unit. The ANN provides a good accuracy and data matching in clean and non-heterogeneous formations compared to those with higher heterogeneity that contain more than one type of lithology. The Ns-X Well can, therefore, be linked to the development plans of the Nasiriya Field instead of neglect it.
Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
This project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreThe need for a flexible and cost effective biometric security system is the inspired of this paper. Face recognition is a good contactless biometric and it is suitable and applicable for Wireless Sensor Network (WSN). Image processing and image communication is a challenges task in WSN due to the heavy processing and communication that reduce the life time of the network. This paper proposed a face recognition algorithm on WSN depending on the principles of the unique algorithm that hold the capacity of the network to the sink node and compress the communication data to 89.5%. An efficient hybrid method is introduced based upon the advantage of Zak transform to offprint the farthest different features of the face and Eigen face method to
... Show MoreDue to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show More
Analyzing the size of the interrelationships between the main economic sectors in the Iraqi economy is an important necessity to know the impact of each sector on other economic sectors on the basis of the interrelationships and reciprocity between them, and what these relationships have achieved in terms of enhancing development and increasing the gross domestic product. To achieve the objectives of the study, we relied on mathematical (quantitative) analysis using user-product tables. Issued by the Ministry of Planning / Central Bureau of Statistics and Research (Directorate of National Accounts) for the economic sectors that make up the Iraqi economy. The study conc
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA wit
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la
tock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.