Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the encoder's backbone. The attention approach is employed in the detection and segmentation modules to guide the model's attention to the most valuable features. A massive collection of neural cell microscopic images tests the proposed method. According to the findings of the experiments, this technology can accurately detect and segment neuronal cell occurrences with an intersection over the union IoU of 95.47 and a Dice-Coeff of 98.34, which is superior to current state-of-the-art approaches.
In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means
... Show MoreThis study was done to examine the concentration of residual chlorine from different regions at AL Risafa side. The samples were collected from Baghdad AL- Jadida, Shareaa Phlistain, AL- Shaab and AL- Habibea, Al-Karrada, Al-Jadria, Al-Adamia at April-August/2013 .The Electrical Conductivity (Ec) and total dissolve solid (TDS), hang about its normal rate according to (WHO) but the Turbidity go beyond it’s limit to reach (11NTU) where the highest peak was recorded in Baghdad AL Jadida. The results show that chlorine concentration were decreased in the August compared with April because of high Temperature, and long in sun shine duration. It is found that there is inverse proportionality between residual chlorine and temperature. Same tr
... Show MoreIron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreTwenty-seven S. aureus isolates were obtained from patients referring various hospitals in Baghdad. Only 17 isolates produced DNase. SNase was extracted and purified from Saphylococcus aureus 3 isolate since it produces the largest zone of clearance on DNase agar. Nevertheless, only those phenotypically-producer of DNase harboured nuc gene. Present study revealed that the crude enzyme had a specific activity of 50.66 unit/mg; while it reached 241 unit/mg after ion exchange chromatography using carboxymethyl cellulose column. SDS-PAGE showed a single sharp band with an approximately 16.8 kDa molecular weight. A matter indicates that the enzyme is consistently pure. Results proved that SNase was able to significantly (P< 0.05) reduce th
... Show MorePlasma physics and digital image processing technique (DIPT) were utilized in this research to show the effect of the cold plasma (plasma needle) on blood cells. The second order statistical features were used to study this effect. Different samples were used to reach the aim of this paper; the patients have leukemia and their leukocytes number was abnormal. By studying the results of statistical features (mean, variance, energy and entropy), it is concluded that the blood cells of the sample showed a good response to the cold plasma.
Realizing robust interconnectivity in a rapidly changing network topology is a challenging issue. This problem is escalating with the existence of constrained devices in a vehicular environment. Several standards have been developed to support reliable communication between vehicular nodes as the IEEE 1609 WAVE stack. Mitigating the impact of security/mobility protocols on limited capability nodes is a crucial aspect. This paper examines the burden of maintaining authenticity service that associated with each handover process in a vehicular network. Accordingly, a network virtualization-based infrastructure is proposed which tackles the overhead of IEEE 1906 WAVE standard on constrained devices existed in vehicular network. The virtualized
... Show MoreSemantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show More