Preferred Language
Articles
/
ijs-6584
Reliability of Stress - Strength and Its Estimation of Exponentiated Q-Exponential Distribution

      In this paper, we study a single stress-strength reliability system   , where Ƹ and ƴ are independently Exponentiated q-Exponential distribution. There are a few traditional estimating approaches that are  derived, namely  maximum likelihood estimation (MLE) and the Bayes (BE) estimators of R. A wide mainframe simulation is used to compare the performance of the proposed estimators using MATLAB program. A simulation study show that the Bayesian estimator is the best estimator than other estimation method under consideration using two criteria such as the “mean squares error (MSE)” and “mean absolutely error (MAPE)”.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Employ Shrinkage Estimation Technique for the Reliability System in Stress-Strength Models: special case of Exponentiated Family Distribution

       A reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown  shape parameter α and known scale parameter λ  equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.

Crossref
View Publication Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Systems Reliability Estimations of Models Using Exponentiated Exponential Distribution

This article deals with estimations of system Reliability for one component, two and s-out-of-k stress-strength system models with non-identical component strengths which are subjected to a common stress, using Exponentiated Exponential distribution with common scale parameter. Based on simulation, comparison studies are made between the ML, PC and LS estimators of these system reliabilities when scale parameter is known.

View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Doubly Type II Censoring of Two Stress-Strength System Reliability Estimation for Generalized Exponential-Poisson Distribution

 In this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability  of a one component strengths X under stress Y. Second, reliability  of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely   quadratic loss function, weighted loss functions,  linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is

... Show More
Scopus Crossref
View Publication
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods of the Stress-Strength Reliability Power Distribution

      This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.

Crossref
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
On the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution

      The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical c

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Gompertz Fréchet stress-strength Reliability Estimation

In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref (1)
Crossref
View Publication Preview PDF