Preferred Language
Articles
/
ijs-6617
On the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution
...Show More Authors

      The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical comparison, simulation and real data are used. The results in light of this distribution show the advantage of the proposed methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods of the Stress-Strength Reliability Power Distribution
...Show More Authors

      This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
On Estimating Reliability of a Stress – Strength Model in Case of Rayleigh Pareto Distribution
...Show More Authors

The stress – strength model is one of the models that are used to compute reliability. In this paper, we derived mathematical formulas for the reliability of the stress – strength model that follows Rayleigh Pareto (Rayl. – Par) distribution. Here, the model has a single component, where strength Y is subjected to a stress X, represented by moment, reliability function, restricted behavior, and ordering statistics. Some estimation methods were used, which are the maximum likelihood, ordinary least squares, and two shrinkage methods, in addition to a newly suggested method for weighting the contraction. The performance of these estimates was studied empirically by using simulation experimentation that could give more varieties for d

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
On Bayesian Estimation of System Reliability in Stress – Strength Model Based on Generalized Inverse Rayleigh Distribution
...Show More Authors
Abstract<p>The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.</p>
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 21 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Estimation of the reliability system in model of stress- strength according to distribution of inverse Rayleigh
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
...Show More Authors
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Different estimation methods of reliability in stress-strength model under chen distribution
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Reliability of Stress - Strength and Its Estimation of Exponentiated Q-Exponential Distribution
...Show More Authors

      In this paper, we study a single stress-strength reliability system   , where Ƹ and ƴ are independently Exponentiated q-Exponential distribution. There are a few traditional estimating approaches that are  derived, namely  maximum likelihood estimation (MLE) and the Bayes (BE) estimators of R. A wide mainframe simulation is used to compare the performance of the proposed estimators using MATLAB program. A simulation study show that the Bayesian estimator is the best estimator than other estimation method under consideration using two criteria such as the “mean squares error (MSE)” and “mean absolutely error (MAPE)”.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Gompertz Fréchet stress-strength Reliability Estimation
...Show More Authors

In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of a Parallel Stress-strength Model Based on the Inverse Kumaraswamy Distribution
...Show More Authors

   

 The reliability of the stress-strength model attracted many statisticians for several years owing to its applicability in different and diverse parts such as engineering, quality control, and economics. In this paper, the system reliability estimation in the stress-strength model containing Kth parallel components will be offered by four types of shrinkage methods: constant Shrinkage Estimation Method, Shrinkage Function Estimator, Modified Thompson Type Shrinkage Estimator, Squared Shrinkage Estimator. The Monte Carlo simulation study is compared among proposed estimators using the mean squared error. The result analyses of the shrinkage estimation methods showed that the shrinkage functions estimator was the best since

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Best estimation for the Reliability of 2-parameter Weibull Distribution
...Show More Authors

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

View Publication Preview PDF
Crossref