Preferred Language
Articles
/
ijs-6470
An Artificial Intelligence-based Proactive Network Forensic Framework

     is at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines a reactive and proactive framework. The proactive part will use machine learning-based classification algorithms to forecast the attack. Once the assault has been predicted, the reactive element of the proposed framework is used to investigate who is attempting to initiate the attack. The suggested system further emphasizes integrity and confidentiality by proposing an encryption method that encrypts the proactive module's report before decrypting it in the reactive module. The suggested elliptical curve cryptography-based security model was compared to several existing security methods in this paper.A comparison of multiple machine learning-based categorization algorithms is also performed in order to determine which is the most suitable for the proposed Network Forensic Framework. Accuracy, recall, precision, and F1 value are the performance metrics used to evaluate the various machine learning-based algorithms. According to the analysis, the suggested Network Forensic Framework is best implemented using the Extreme Gradient Boosting (XGB) technique.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving the Multi-criteria, Total Completion Time, Total Earliness Time, and Maximum Tardiness Problem

Machine scheduling problems (MSP) are     considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as  are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 02 2009
Journal Name
Noise And Health
Expert system to predict effects of noise pollution on operators of power plant using neuro-fuzzy approach

Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jan 25 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics Vol
Predicate the Ability of Extracorporeal Shock Wave Lithotripsy (ESWL) to treat the Kidney Stones by used Combined Classifier

Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Improving IoT Applications Using a Proposed Routing Protocol

The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
Scopus (4)
Scopus
View Publication Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Robustness Assessment of Regional GNSS Geodetic Networks for Precise Applications

Over the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Performance Evaluation of UDP, DCCP, SCTP and TFRC for Different Traffic Flow in Wired Networks

<p>The demand for internet applications has increased rapidly.  Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
International Journal Of Interdisciplinary Telecommunications And Networking
Simulated Performance of TFRC, DCCP, SCTP, and UDP Protocols Over Wired Networks

Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were thro

... Show More
Crossref (1)
Clarivate Crossref
View Publication
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Heuristic Modularity for Complex Identification in Protein-Protein Interaction Networks

     Due to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function.   The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties.  The modulari

... Show More
Scopus (10)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Using Backpropagation to Predict Drought Factor in Keetch-Byram Drought Index

Forest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data

... Show More
Clarivate Crossref
View Publication Preview PDF