The novel coronavirus 2019 (COVID-19) is a respiratory syndrome with similar traits to common pneumonia. This major pandemic has affected nations both socially and economically, disturbing everyday life and urging the scientific community to develop solutions for the diagnosis and prevention of COVID-19. Reverse transcriptase-polymerase chain reaction (RT–PCR) is the conventional approach used for detecting COVID-19. Nevertheless, the initial stage of the infection is less predictable in PCR tests, making early prediction challenging. A robust and alternative diagnostic method based on digital computerised technologies to support conventional methods would greatly help society. Therefore, this paper reviews recent research based on using machine and federated learning techniques on publicly available datasets comprising Computed Tomography (CT) images, Chest X-ray (CXR) and ultrasound of COVID-19 patients. This paper also analyses the analytical efficiency such as accuracy, sensitivity, specificity and F1-score of models to determine the efficacy. Based on our study, we observed that Machine Learning (ML) was proposed widely in COVID-19 prediction and diagnosis methods. But this method has challenges due to less dataset availability and privacy concerns. However, federated learning-based COVID-19 detection overcame the challenge and provided better efficacy with low datasets and supported medical data privacy. Thus, based on the advantage observed, federated learning-based COVID-19 detection systems should be developed in the future.
In this paper, the problem of scheduling jobs on one machine for a variety multicriteria
are considered to minimize total completion time and maximum late work. A set of n
independent jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can handle no more than one job at a time. Job i,(i=1,…,n)
requires processing during a given positive uninterrupted time pi, and its due date d
i.
For the bicriteria problems, some algorithms are proposed to find efficient (Pareto)
solutions for simultaneous case. Also for the multicriteria problem we proposed general
algorithms which gives efficient solutions within the efficient range
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated paramete
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.
... Show MoreDiabetes is a disease caused by high sugar levels. Currently, diabetes is one of the most common diseases in the number of people with diabetes worldwide. The increase in diabetes is caused by the delay in establishing the diagnosis of the disease. Therefore, an initial action is needed as a solution that requires the most appropriate and accurate data mining to manage diabetes mellitus. The algorithms used are artificial neural network algorithms, namely Restricted Boltzmann Machine and Backpropagation. This research aims to compare the two algorithms to find which algorithm can produce high accuracy, and determine which algorithm is more accurate in detecting diabetes mellitus. Several stages were involved in this research, including d
... Show MoreThis study is concerned with the recent changes that occurred in the last three years (2017-2019) in the marshes region in southern Iraq as a result of the changes in the global climate, the study included all the water bodies in the five governorates that are located in the southern regions of Iraq (Wasit, Maysan, Dhi-Qar, Qadisiyah and Basrah), which represent the marshes lands in Iraq. Scenes of the Landsat 8 satellite are used to create a mosaic to cover the five governorates within a time window with the slightest difference between the date of the scene capture, not to exceed 8 days. The results of calculating the changes in water areas were obtained using the classifier support vector machine, where high accuracy ratios were recorded
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela
... Show MoreThe dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo
... Show MoreFace recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o