The novel coronavirus 2019 (COVID-19) is a respiratory syndrome with similar traits to common pneumonia. This major pandemic has affected nations both socially and economically, disturbing everyday life and urging the scientific community to develop solutions for the diagnosis and prevention of COVID-19. Reverse transcriptase-polymerase chain reaction (RT–PCR) is the conventional approach used for detecting COVID-19. Nevertheless, the initial stage of the infection is less predictable in PCR tests, making early prediction challenging. A robust and alternative diagnostic method based on digital computerised technologies to support conventional methods would greatly help society. Therefore, this paper reviews recent research based on using machine and federated learning techniques on publicly available datasets comprising Computed Tomography (CT) images, Chest X-ray (CXR) and ultrasound of COVID-19 patients. This paper also analyses the analytical efficiency such as accuracy, sensitivity, specificity and F1-score of models to determine the efficacy. Based on our study, we observed that Machine Learning (ML) was proposed widely in COVID-19 prediction and diagnosis methods. But this method has challenges due to less dataset availability and privacy concerns. However, federated learning-based COVID-19 detection overcame the challenge and provided better efficacy with low datasets and supported medical data privacy. Thus, based on the advantage observed, federated learning-based COVID-19 detection systems should be developed in the future.
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreUniversal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MorePalm vein recognition technology is a one of the most effective biometric technologies for personal identification. Palm acquisition techniques are either contact-based or contactless-based. The contactless-based palm vein system is considered more accurate and efficient when used in modern applications, but it may suffer from problems like pose variations and the delay in the matching process. This paper proposes a contactless-based identification system for palm vein that involves two main steps; First, the central region of the palm is cropped using fast extract region of interest algorithm, then the features are extracted and classified using altered structure of Residual Attention Network, which is a developed version of convolution
... Show MoreThe main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg
... Show MoreSustainable development (SD) is an improvement that meets present needs but jeopardizes the ability of new populations to do the same. It is vital to acquaint EFL students with the terminology and idiomatic expressions of this discipline. Nowadays, sustainable development and the environment have been prioritized in every aspect of life. Since culture and the teaching of Foreign language English cannot be separated, the English language becomes the mean of communication in health, economics, education, and politics. Thus, integrating sustainable development goals within language learning and teaching is very important. This descriptive quantitative study aims to investigate the perception of EFL pre-service teachers of sustainable develo
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreAbstract
It considers training programs is an important process contributing to provide employees with the skills required to do their jobs efficiently and effectively, so it should be concerned with and the focus of all government our organizations, and perhaps the most important reasons that I was invited to select the subject (evaluation of training programs directed toward the diagnosis of the phenomenon of financial and administrative corruption) It is the importance of those programs working in the regulatory institutions General and the Office of Inspector General of Finance and the Ministry particularly for employees because of their role in the development of their skills and their experience and their beha
... Show MorePurpose: The purpose of this study was to clarify the basic dimensions, which seeks to indestructible scenarios practices within the organization, as a final result from the use of this philosophy.
Methodology: The methodology that focuses adoption researchers to study survey of major literature that dealt with this subject in order to provide a conceptual theoretical conception of scenarios theory .
The most prominent findings: The only successful formulation of scenarios, when you reach the decision-maker's mind wa takes aim to form a correct mental models, which appear in the expansion of Perception managers, and adopted as the basis of the decisions taken. The strength l
... Show More