As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put forth and contrasted with the current algorithms at the network level. Elliptic Curve Cryptography combined with the Koblitz encoding technique produced superior results. By implementing machine learning and deep learning techniques, wireless sensor networks are protected against cyber-attacks, and the suggested encryption approach ensures the confidentiality of data transfer. The estimated encryption and decryption times were evaluated with various file sizes and contrasted with the current systems. The suggested solutions were successful in achieving security at both the node level and network level.
Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Landforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreIn this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreMaintenance of machine tools can be improved significantly by analyzing the operating of manufacturing process with the real-time monitoring system for 3-D single point deformation measurements. Therefore, the process of manufacturing could be optimized with less cost. Recently, wireless technology and internet of things (IOT) applied on intelligent machine has witnessed a significant advance with augmented virtuality, the analysis and the process certainly would contribute to enhance the intelligence of that machine. This paper presents a group of the wireless sensors and 3D animation technologies for data monitoring and analyzing. Three degree of freedom robotic hand structure has been selected as a prototype to be form the process of the
... Show MoreObjective(s): To assess the level of depression and anxiety among school age children with acute lymphoblastic leukemia under chemotherapy treatment and to find out the relationship between the level of depression and anxiety among the affected children and their demographic characteristics.
Methodology: A cross-sectional study was conducted on school age children both gender having acute lymphoblastic leukemia under chemotherapy treated and their age between 6 years to 12 years. The study started from the period of September, 19th 2020 to March,1st 2021. Non-probability (Purposive) sample of (114) children with acute lymphoblastic leukemia under chemotherapy was selected in attending hospital wards, outpatient and counseling clinics
Chitinase-3-like 1 protein (YKL-40) is a glycoprotein primarily produced in the arthritic joint and plays a crucial role in inflammatory processes. The aim of the study is to establish the role of YKL-40 as a biomarker for rheumatoid arthritis (RA) compared to proinflammatory biomarkers and disease activity. The study included 58 patients and 18 control. Diseases activity score (DAS-28) and clinical disease activity index (CDAI) were measured. Serum level of YKL-40, tumor necrosis factor-α (TNF-α), interleukin-1B (IL-1β), erythrocyte sedimentation (ESR), rheumatoid factor (RF), C-reactive protein (CRP), and anti-citrullinated protein antibody (ACPA) were assessed. The results showed that the median serum YKL-40 level which was 5.42
... Show More