The antibacterial activities of some nanoparticles, makes them attractive as a new agents against pathogenic bacteria. In this research, the antimicrobial effects of Titanium dioxide-nano-particles against seven bacterial isolates (E.coli, Enterobacter aerogenes, Pseudomonas alcaligenes, Aeromonas veronii, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus) being isolated from different Baghdad water purification stations investigated. The physiochemical characters, which influence the quality of the drinking water for the air and water, demonstrated.The characterization of nanoparticles investigated by using Scanning Electrone Microscope, FTIR, and UV-Visible Spectrophotometer. The activity of different concentration of TiO2 Nps. (50, 100, 150, 200 mg/ ml) measured in liquid medium using the colorimetric analysis and measuring the optical density (OD) for all bacterial species observed. The plate count assay were involved to investigate the effect of TiO2 Nps. on one model of gram negative bacteria (E. coli) and one gram positive bacteria (S. aureus.) This study showed that nano-TiO2 has efficient antibacterial effect in water, and can used as an antibacterial agent for different purposes.
RKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
A simple, sensitive and rapid method was used for the estimate of: Propranolol with Bi (III) to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on a reaction between propranolol and Bi (III) in an aqueous medium to obtain a yellow precipitate. Optimum parameters were studied to increase the sensitivity for the developed method. A linear range for calibration graph was 0.1-25 mmol/L for cell A and 1-40 mmol/L for cell B, and LOD 51.8698 ng/200 µL and 363.0886 ng /200 µL , respectively to cell A and cell B with correlation coefficient (r) 0.9975 for cell A, 0.9966 for cell B, RSD% was lower than 1%, (n = 8) for the
... Show MoreAnew Schiff base (NaHL) has been prepared from the reaction between the salt of amino acid glycine with 2-hydroxy naphthaldehyde. By tridentate Schiff base of (ONO), donors were characterized by using U.V and spectrophotometer techniques. Complexes of Co(II) Ni(II) Cu(II) and Zn(II) ion with the ligand have been prepared, these complexes were identified by infrared, electronic spectral data, elemental analysis, magnetic moments, and molar conductivity measurements. It is concluded from the elemental analysis that all the complexes have (1:2) [metal:ligand] molar ratios, octahedral, with the exception to Zn(II) complex which have (1:1)[metal:ligand] molar ratio.
... Show MoreSYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
2-(1,2-dihydroxy ethyl -1- (2-mercaptophenyl)-5-(2-mercaptophenyl imino)-2,5-dihydro-1H-pyrrol-3,4-diol(H2L`)a lactam derivative of L-ascorbic acid was prepared by reaction of 5,6-O-isopropylidene L-ascorbic acid with 2-amino thiophenol in a mole ratio of (1:2) respectinely. A series of new metal complexes of this ligand (H2L`) were prepared by a reaction with the chlorides of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The new ligand and its metal complexes were characterized by C.H.N.,1H and 13C NMR, IR as well as UV-Visible spectra and mass spectra of Ni(II) and Zn(II) complexes was also done. Atomic absorption of the metal percentage, electrical conductivity and magnetic measurements at room temperature was ca
... Show MoreIn the present work the nuclear structure of even-even
Ba(A=130-136, Z=56) isotopes was studied using (IBM-1). The reduced matrix element of magnetic dipole moment (11 II f(Ml) II/,) and the magnetic dipole transitions probability B(M 1) were calculated
for one and two bodies of even-even Ba(A=lJ0-136, Z=56). A good
agreement had been found of present with available experimental data.
New binuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II) Complexes of N2S2 tetradentate or N4S2 hexadentate symmetric Schiff base were prepared by the condensation of butane-1,4-diylbis(2-amino ethylcarbamodithioate) with 3-acetyl pyridine. The complexes having the general formula [M2LCl4] (where L=butane-1,4-diyl bis (2-(z)-1-(pyridine-3-ylethylidene amino))ethyl carbamodithioate, M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)), were prepared by the reaction of the mentioned metal salts and the ligand. The resulting binuclear complexes were characterized by molar conductance, magnetic susceptibility ,infrared and electronic spectral measurements. This study indicated that Mn(II), Ni(II) and Cu(II) complexes have octahedral g
... Show MoreThe reaction of ethylenediamine with [2,4,6-trihydroxyacetophenon] and KOH (Schiff Base) to gives the new tetradentate ligand 2-(1-{2-{1-2,6-Dihydroxy-4-methyl phenyl)ethyliden amino}- ethylimino}-ethyl-benzene- 1,2,5-triol [HCl]. This ligand was reacted with some metal ions (Cu(II), Co(II), Ni(II), Zn(II), and Cd(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(H4L)], where: M= Cu(11), Co(II), Ni(II), Zn(II), and Cd(II). All compounds were characterized by spectroscopic methods [I.R, U.V.-Vis, C.H.N., analysis H.P.L.C, atomic absorption, magnetic susceptibility, (EI-mass for the ligand)], and microanalysis along with conductivity measurements
... Show MoreA new Schiff base ligand [L] [3-methyl-9,10 phenyl -6,7 dihydro-5,8 –dioxo-1,2 diazo –cyclo dodecu 2,11-diene ,4-one ] and its complexes with (Co(II), Ni(II), Cu (II), Zn(II) and Cd(II)) were synthesis.This ligand was prepared in three steps, in the first step a solution of salicyladehyed in methanol reacted under refluxed with hydrazine monohydrate to give an (intermediate compound 1) which reacted in the second step with sodium pyruvate to give an (intermediate compound 2) which gave the ligand [L] in the three step when it reacted with 1,2- dichloro ethane.The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [IR, UV-
... Show More