Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the pixels of the objects and background through making the dark intensity pixels darker and the light intensity pixels lighter. The first 20 classes of Caltech 101 dataset have been utilized to demonstrate the performance of the proposed segmentation approach. Also, the Saliency Cut method has been adopted as a benchmark segmentation method. In summary, the proposed method improved some of the segmentation problems and outperforms the current segmentation method namely Saliency Cut method with segmentation accuracy 77.368%, as well as it can be used as a very useful step in improving the performance of visual object categorization system because the region of interest is mostly available.
Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
Breast cancer is one of the most common malignant diseases among women;
Mammography is at present one of the available method for early detection of
abnormalities which is related to breast cancer. There are different lesions that are
breast cancer characteristic such as masses and calcifications which can be detected
trough this technique. This paper proposes a computer aided diagnostic system for
the extraction of features like masses and calcifications lesions in mammograms for
early detection of breast cancer. The proposed technique is based on a two-step
procedure: (a) unsupervised segmentation method includes two stages performed
using the minimum distance (MD) criterion, (b) feature extraction based on Gray
In this work, the performance of single-mode optical fibers (SMFs) for ultraviolet (UV) radiation monitoring and dosimetry applications is presented. In particular, this work will focus on the Radiation-Induced Absorption (RIA) phenomena in the Near-Infrared domain (NIR). Such phenomena play a very important role in the sensing mechanism for SMF. Single mode fibers with a diameter of 50 µm were used for this purpose. These fibers were dipped into germanium (Ge) solution with different concentrations (1, 3, and 5 wt%) to produce the sensing part of the sensor. For all optical fiber sensors under investigation, the results indicated the dependence of the RIA on the applied UV radiation energy. Also, a redshi
... Show MoreThe widespread use of images, especially color images and rapid advancement of computer science, have led to an emphasis on securing these images and defending them against intruders. One of the most popular ways to protect images is to use encryption algorithms that convert data in a way that is not recognized by someone other than the intended user. The Advanced Encryption Standard algorithm (AES) is one of the most protected encryption algorithms. However, due to various types of theoretical and practical assaults, like a statistical attack, differential analysis, and brute force attack, its security is under attack.
In this paper, a modified AES coined as (M-AES) is proposed to improve the efficiency
... Show MoreIn this paper, a new modification was proposed to enhance the security level in the Blowfish algorithm by increasing the difficulty of cracking the original message which will lead to be safe against unauthorized attack. This algorithm is a symmetric variable-length key, 64-bit block cipher and it is implemented using gray scale images of different sizes. Instead of using a single key in cipher operation, another key (KEY2) of one byte length was used in the proposed algorithm which has taken place in the Feistel function in the first round both in encryption and decryption processes. In addition, the proposed modified Blowfish algorithm uses five Sboxes instead of four; the additional key (KEY2) is selected randomly from additional Sbox
... Show MoreThyroid is a small butterfly shaped gland located in the front of the neck just below the Adams apple. Thyroid is one of the endocrine gland, which produces hormones that help the body to control metabolism. A different thyroid disorder includes Hyperthyroidism, Hypothyroidism, and thyroid nodules (benign/malignant). Ultrasound imaging is most commonly used to detect and classify abnormalities of the thyroid gland. Segmentation method is a tool that used widely in many applications including medical image processing. One of the common applications of segmentation is in medical image analysis for clinical diagnosis that has an important role in terms of quality and quantity.
The main objective of this research is to use the Computer-Ai
A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreImproving students’ use of argumentation is front and center in the increasing emphasis on scientific practice in K-12 Science and STEM programs. We explore the construct validity of scenario-based assessments of claim-evidence-reasoning (CER) and the structure of the CER construct with respect to a learning progression framework. We also seek to understand how middle school students progress. Establishing the purpose of an argument is a competency that a majority of middle school students meet, whereas quantitative reasoning is the most difficult, and the Rasch model indicates that the competencies form a unidimensional hierarchy of skills. We also find no evidence of differential item functioning between different scenarios, suggesting
... Show MoreHueckel edge detector study using binary step edge image is presented. The standard algorithm that Hueckel presented, in his paper without any alteration is adopted. This paper studies a fully analysis for the algorithm efficiency, time consuming and the expected results with slide window size and edge direction. An analysis for its behavior with the changing of the slide window size (disk size) is presented. The best result is acquired when the window size equals to four pixel.