Breast cancer is one of the most common malignant diseases among women;
Mammography is at present one of the available method for early detection of
abnormalities which is related to breast cancer. There are different lesions that are
breast cancer characteristic such as masses and calcifications which can be detected
trough this technique. This paper proposes a computer aided diagnostic system for
the extraction of features like masses and calcifications lesions in mammograms for
early detection of breast cancer. The proposed technique is based on a two-step
procedure: (a) unsupervised segmentation method includes two stages performed
using the minimum distance (MD) criterion, (b) feature extraction based on Gray
level Co-occurrence matrices GLCM for the identification of masses and
calcifications lesions. The method suggested for the detection of abnormal lesions
from mammogram image segmentation and analysis was tested over several images
taken from National Center for Early Detection of cancer in Baghdad.
Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
LK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
The liver diseases can define as the tumor or disorder that can affect the liver and causes deformation in its shape. The early detection and diagnose of the tumor using CT medical images, helps the detector to specify the tumor perfectly. This search aims to detect and classify the liver tumor depending on the use of a computer (image processing and textural analysis) helps in getting an accurate diagnosis. The methods which are used in this search depend on creating a binary mask used to separate the liver from the origins of the other in the CT images. The threshold has been used as an early segmentation. A Process, the watershed process is used as a classification technique to isolate the tumor which is cancer and cyst.
 
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Optical Character Recognition (OCR) research includes computer vision, artificial intelligence, and pattern recognition. Character recognition has garnered a lot of attention in the last decade due to its broad variety of uses and applications, including multiple-choice test data, business documents (e.g., ID cards, bank notes, passports, etc.), and automatic number plate recognition. This paper introduces an automatic recognition system for printed numerals. The automatic reading system is based on extracting local statistical and geometrical features from the text image. Those features are represented by eight vectors extracted from each digit. Two of these features are local statistical (A, A th), and six are local
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
The purpose of this study was to evaluate the thickness of the compressed breast in mediolateral oblique (MLO) and craniocaudal (cc) mammograms to relate these thickness and breast patterns to mean glandular dose (MAD) in Iraqi women and to evalualat radiology's recommendation for Iraqi women. The study of population consists of 20 paired MLO and CC mammograms obtained on one mammograms unit .The digital read out of compressed breast thickness MGD was calculated by multiplying entrance skin exposure by the exposureto-absorbed dose conversion factor for the range of breast thickness which was 7.1 ----7.4cm in cc mammograms with a mean breast thickness of 7.2 cm and 7.3 ------7.5 cm in MLO mammograms with a mean br
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThe present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.