Preferred Language
Articles
/
ijs-6237
A Modified Segmentation Approach for Real World Images Based on Edge Density Associated with Image Contrast Stretching
...Show More Authors

Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the pixels of the objects and background through making the dark intensity pixels darker and the light intensity pixels lighter. The first 20 classes of Caltech 101 dataset have been utilized to demonstrate the performance of the proposed segmentation approach. Also, the Saliency Cut method has been adopted as a benchmark segmentation method. In summary, the proposed method improved some of the segmentation problems and outperforms the current segmentation method namely Saliency Cut method with segmentation accuracy 77.368%, as well as it can be used as a very useful step in improving the performance of visual object categorization system because the region of interest is mostly available.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Active Filter Based on Genetic Algorithm
...Show More Authors

The  lossy-FDNR  based  aclive  fil ter has an  important   property among  many  design  realizations. 'This includes  a significant reduction in component count particularly in the number  of OP-AMP which consumes   power.  However  the·  problem  of  this   type  is the  large component spreads  which affect the fdter performance.

In  this  paper   Genetic   Algorithm   is  applied   to  minimize   the component  spread   (capacitance  and  resistance  p,read). The minimization of these spreads allow the fil

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref
Publication Date
Wed Aug 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of the Number of Gaussian Points and Their Distribution on Image Quality
...Show More Authors

This  research  involves  studying  the  influence  of  increasing  the

number of Gaussian points and the style of their distribution, on a circular exit pupil, on the numerical calculations accuracy of the point spread function for an ideal optical system and another system having focus error of (0.25 A. and 0.5 A. )

It was shown that the accuracy of the results depends on the type of

distributing points on the exit pupil. Also, the accuracy increases with the increase of the number of points (N) and the increase of aberrations which requires on increas (N).

View Publication Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin
...Show More Authors

Abstract 

In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust  at 30cm , angle 60

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Classification of Optical Images of Cervical Lymph Node Cells
...Show More Authors
Abstract<p>the study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Using K-mean Clustering to Classify the Kidney Images
...Show More Authors

      This study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases.  Medical images of different cases of kidney diseases were compared with those of   healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Satellite Images Fusion Using Mapped Wavelet Transform Through PCA
...Show More Authors

In this paper a new fusion method is proposed to fuse multiple satellite images that are acquired through different electromagnetic spectrum ranges to produce a single gray scale image. The proposed method based on desecrate wavelet transform using pyramid and packet bases, the fusion process preformed using two different fusion rules, where the low frequency part is remapped through the use of PCA analysis basing on covariance matrix and correlation matrix, and the high frequency part is fused using different fusion rules (adding, selecting the higher, replacement), then the restored image is obtained by applying the inverse desecrate wavelet transform. The experimental results show the validity of the proposed fusion method to fuse suc

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Clouds Height Classification Using Texture Analysis of Meteosat Images
...Show More Authors

In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Use of Infrared Light to Improve Breast Sonographic images
...Show More Authors

It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Neuroquantology
Optical Distinguish of Malignancy Cases of Skin Tumors Images
...Show More Authors

The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a

... Show More