Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA with more biological consistency. For this purpose, a new crossover operator is suggested where biological information in terms of both gene semantic similarity and protein functional similarity is fed into its design. To reflect the heuristic roles of both semantic and functional similarities, this paper introduces two gene ontology (GO) aware crossover operators. These are direct annotation-aware and inherited annotation-aware crossover operators. The first strategy is handled with the direct gene ontology annotation of the proteins, while the second strategy is handled with the directed acyclic graph (DAG) of each gene ontology term in the gene product. To conduct our experiments, the proposed EAs with GO-aware crossover operators are compared against the state-of-the-art heuristic, canonical EAs with the traditional crossover operator, and GO-based EAs. Simulation results are evaluated in terms of recall, precision, and F measure at both complex level and protein level. The results prove that the new EA design encourages a more reliable treatment of exploration and exploitation and, thus, improves the detection ability for more accurate protein complex structures.
A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More2929-2933
Thirty nine (12.8%) isolates of Staphylococcus aureus were isolated from 304 healthy human (Nasal swabs). It was found that percentage of males that have S. aureus is more than female's percentage. These isolates (39) were tested with different tests. Twenty seven isolates (69.23 %) were positive for Staphylococcus protein —A (SPA) ,thirty seven ( 94.8 %) were positive for tube coagulase , thirty five ( 89.7 % ) were positive with clumping factor and thirty two ( 82.05 %) had 13 — hemolytic on blood agar. It was found that 100% of the isolates (39 isolates) were positive with one, two or three tests (tube coagulase, clumping factor and SPA).
A range of macrocyclic dinuclear metal (II) dithiocarbamate-based complexes are reported. The preparation of complexes was accomplished from either mixing of the prepared ligand with a metal ion or through a template one-pot reaction. The preparation of the bisamine precursor was achieved through several synthetic steps. The free ligand; potassium 2,2'-(biphenyl-4,4'-diylbis(azanediyl))bis(1-chloro-2-oxoethane-2,1diyl)bis(cyclohexylcarbamodithioate) (L) was yielded from the addition of CS2 to a bis-amine precursor in KOH medium.A variety of analytical and physical methods were implemented to characterise ligand and its complexes. The analyses were based on spectroscopic techniques (FTIR, UV-Vis, mass spectroscopy and 1H, 13C-NMR sp
... Show MoreTotal protein and total fucose were determined in sera of thyroid
disorder patients.
Sera of (40) diagnosed by consultant hyperthyroidism, and 40 hypothyroidism were analyzed for the above parameter for control, sera of (40) normal individuals were used.
They were healthy with no appearing disorder results analysis revealed no significant differences (P<0.05) in the (mean ±SD) of total protein values in sera of hyper and hypothyroidism were compared
... Show MoreThe design of this paper is to find the possible correlation of Epstein Barr virus infection ina group of Iraqi women with cervical carcinoma though detection of Latent Membrane Protein 1 (LMP1) in these cervical tissues. Paraffinized blocks of two groups were included. The first sample of 30 cervical carcinomatous tissues and 15 biopsies from an apparently normal cervical tissues. All the samples were sectioned on a positive charged slides with 4 mm – thickness then submitted for immunohistochemical (IHC) staining to detect viral LMP1 expression. Sixty three percentage (19 out of 30) of the studies group showed positive overexpression as shown in with a significant association of the expression with cervical cancer with a significant ass
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreAfter about twelve months or maybe more, some people can’t achieve pregnancy. This might be a sign of infertility as a reproductive system disease. The following study was carried out to investigate the DAZ 1 gene methylation level and its association with azoospermia in Iraqi patients. One hundred and fifty human blood samples were collected from from different regions in Baghdad governorate, including (private medicals Labs and the high institute for infertility diagnosis assisted reproductive techniques and Kamal Al- Samara'ay IVF Hospital) from both fertile and infertile men. The control group consists of 50 samples ranging from 22 to 51 years old, while the patient (infertile group) consists of 100 samples ranging between 25 and 51 y
... Show More