In this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a function of gold nanoparticles sizes and distribution on the surface of PS.
It was found that there are two behaviours were observed for the photoluminescence spectra of PS/AuNPs substrate; quenching and enhancement effects based on the average gold nanoparticles sizes and their aggregation forms.
The alfalfa plant, after harvesting, was washed, dried, and grinded to get fine powder used in water treatment. We used the alfalfa plant with ethanol to make the alcoholic extract characterized by using (GC-Mass, FTIR, and UV) spectroscopy to determine active compounds. Alcoholic extract was used to prepare zinc nanoparticles. We characterized Zinc nanoparticles using (FTIR, UV, SEM, EDX Zeta potential, XRD, AFM). Zinc nanoparticle with Alfalfa extract and alfalfa powder were used in the treatment of water polluted with inorganic elements such as Cr, Mn, Fe, Cu, Cd, Ag by (Batch processing). The batch process with using alfalfa powder gets treated with Pb (51.45%), which is the highest percentage of treatment. Mn (13.18%), which is the
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreMagnetized iron oxide nanoparticles (NPs) were prepared using Eucalyptus leaf extract and then coated with CTAB (Cetrimonium bromide) to increase efficiency. The prepared and modified (NPs) were characterized using AFM, FTIR, and X-ray techniques. The adsorption of the dye reactive blue RB 238 on coated (NPs) was investigated. The effect of various experimental factors, such as the initial concentration of the dye, the amount of adsorbent, pH and temperature on the removal of RB238 was studied. The best conditions for dye removal were found to be 298 K in an acidic medium of pH = 3 and an appropriate dose of the adsorbent of 0.15 g per 25 mg/L to achieve the best color removal of 90% within 60 minutes. The pseudo-second-order re
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245V) versus Ag/AgCl in 0.1M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47s-1. The electrode was used as a hydrogen peroxide biosensor with a line
... Show MoreThis work was carried out at the Glass House at the Faculty of Agriculture/ Anbar University in the period between 2016 to 2017 Nano-iron and dry yeast extract were added to evaluate the response of maize productivity. Three concentrations of nano-iron, 0, 50, and 100 mg, were sprayed on the leaves The yeast extract of three concentrations 0, 100 and 150 grams per liter were sprayed on the leaves. The results showed the superiority of the treatments that were sprayed with nanoparticles with the highest rate of chlorophyll, the seed protein ratio and the percentage of seed oil. Significant levels were also recorded when spraying the plants with dry yeast extract. The interactions of 100 mg of nanotube and 150 g / l dry yeast extract chara
... Show MoreNanochemistry is a significant area which involves the synthesis, design, and manipulation of particle structures with dimensions ranging from 1 to 100 nanometres. It is now one of the major concerns of pharmaceutical and biological researchers. The current study discusses recent advances in the use of silver nanoparticles (AgNPs) as a selective sensor for qualitative and colorimetric quantitative detection of mercury ions. The synthesis of significant noble metal AgNPs is described as a novel, low-cost, quick, and simple method for detecting mercury ions. Due to the seriousness of mercury toxicity to our cells, AgNPs may be successfully employed for the detection of ecologically harmful mercury ions in a wide variety of aqueous
... Show MoreIn this study, the gamma ray shielding properties of shields prepared from polyvinyl alcohol as a base material reinforced with barium sulfate nanoparticles at different reinforcement ratios (5,15,25,35,45 %) and thickness 1 cm were studied. To determine the acceptability of these shields for use in gamma ray protection, some parameters including linear attenuation coefficient (μ), mean free path (λ), and half value layer (HVL) were determined using133Ba, 22Na, 137Cs, and 60Co radioactive sources that produced gamma rays with energies of (356, 662, 1173, 1275 and 1332 KeV). The (NaI (Tl)) gamma system was employed for this purpose. The fabricated shields' effective atomic
... Show MoreA critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show More