Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value of the features using mode operator. The proposed GA-based
clustering models are evaluated using Network Security Laboratory-Knowledge
Discovery and Data mining (NSL-KDD) benchmark dataset. Also, it is compared
with two baseline methods namely k-means and k-prototype to judge their
performance and to confirm the value of the obtained clustering structures. The
experiments demonstrate the effectiveness of the proposed models for intrusion
detection problem in which and models outperform the two baseline
methods in accuracy ( ), detection rate ( ) and true negative rate ( ).
Moreover, the results prove the positive impact of the proposed mutation operator to
enhance the strength of model in all evaluation metrics. It successfully attains
6.4, 5.463 and 3.279 percentage of relative improvement in over and
baseline models respectively.
Video steganography has become a popular option for protecting secret data from hacking attempts and common attacks on the internet. However, when the whole video frame(s) are used to embed secret data, this may lead to visual distortion. This work is an attempt to hide sensitive secret image inside the moving objects in a video based on separating the object from the background of the frame, selecting and arranging them according to object's size for embedding secret image. The XOR technique is used with reverse bits between the secret image bits and the detected moving object bits for embedding. The proposed method provides more security and imperceptibility as the moving objects are used for embedding, so it is difficult to notice the
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreIn this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some exam
... Show MoreThe notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Multivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data. This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor ( −
In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
The Tigris River in Iraq is of highly meandering in several of its parts. So, the largest meandering inside Baghdad City, is in Al-Jadriyah. During its course, the Tigris Riverbanks are facing erosion frequently due to alteration in the geomorphological and hydrological characteristics affecting the river channel. The entire length of Tigris River from the northern entrance of Baghdad to the convergence with Diyala River at southern of Baghdad is about 49 km length. The Tigris River is suffering from the erosion, deposition, and migration conditions. The river migration was found as maximum in the left bank at the side of the University, and lesser in the right bank in the opposite side, Dora. The aim of this study is to measure the magn
... Show MoreThe present paper discusses morphological and syntactic structures of time in Russian language. The morphological and syntactic structures are considered part component of time category in Russian language.
The morphological categories of time are formed through a various types of expressions .Tenses generally express time relative to the moment of speaking. In some contexts, however, their meaning may be relativized to a point in the past ,present or future which is established in the discourse .Some languages have different verb forms or constructions and that are opposed in meaning not in syntactic category. Hence, the present study traces and compares the syntacti
... Show More