Preferred Language
Articles
/
ijs-6054
Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs)
...Show More Authors

    Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA using transfer learning with fine-tuning. This paper proposed three versions of pre-trained networks (VGG16, VGG19, and ResNet50) for handling the classification task. According to the classification results, The proposed model ResNet50 outperformed the other models a validation accuracy of 91.51% has been obtained.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation & Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Mar 19 2023
Journal Name
Journal Of Educational And Psychological Researches
Cognitive Absorption and E-learning Readiness in Learning Digitization among Preparatory Stage in Qatar
...Show More Authors

Abstract

The study aims to examine the relationships between cognitive absorption and E-Learning readiness in the preparatory stage. The study sample consisted of (190) students who were chosen randomly. The Researcher has developed the cognitive absorption and E-Learning readiness scales. A correlational descriptive approach was adopted. The research revealed that there is a positive statistical relationship between cognitive absorption and eLearning readiness.

View Publication Preview PDF
Publication Date
Tue Feb 25 2025
Journal Name
Journal Of Physical Education
The Effect Of Absolute Strength Training On Knee Injuries Rehabilitation And Special Strength In Muay Thai Fighters
...Show More Authors

View Publication
Publication Date
Tue Feb 25 2025
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
THE INFLUENCE OF FRICTION FACTOR ON THE COMBINED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A RECTANGULAR DUCT WITH INTERIOR CIRCULAR CORE
...Show More Authors

View Publication
Publication Date
Mon Dec 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mass Transfer Enhancement Using Extensions as Turbulence Promoters
...Show More Authors

Mass transfer was studied using a rotating cylinder electrode with different lengths of legs acting as turbulence promoters. Two types of rotating cylinder ,made of brass, were examined : an enhanced cylinder one, with four rectangular extensions 10 mm long, 10 mm wide, and 1mm thick, and an enhanced cylinder two with four longitudes 30 mm long,10 mm wide, and 1mm thick. The best performance was obtained for enhanced cylinder two at low rotation speeds while enhanced cylinder one was realized at high rotation speeds. The mass transfer enhancement as compared with a normal rotating cylinder electrode, devoid of promoters, is 53% or 58% higher. The enhancement percentage decreased as rotation speeds increased further, since, seemingly, ful

... Show More
View Publication Preview PDF
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 03 2013
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors