Face recognition system is the most widely used application in the field of security and especially in border control. This system may be exposed to direct or indirect attacks through the use of face morphing attacks (FMAs). Face morphing attacks is the process of producing a passport photo resulting from a mixture of two images, one of which is for an ordinary person and the other is a judicially required. In this case, a face recognition system may allow travel of persons not permitted to travel through face morphing image in a Machine-Readable Electronic Travel Document (eMRTD) or electronic passport at Automatic Border Control (ABC) gates. In creating an electronic passport, most countries rely on applicant to submit images in a form of a document or via the Internet, and this allows applicants to manipulate the images to produce morphing images. These photos allow both beneficial and harmful partners to cross borders using the same passport. This is considered a major threat to the security systems that allow them to travel without revealing their true identity. This paper aims to provide a comprehensive overview of face morphing attacks and the development taking place in this specialty. This paper describes the techniques for generating metamorphic images and challenges they face, in addition to the advantages and disadvantages of these techniques. It also dealt with types of techniques used in detecting and determining the attack of mutant faces in the field of deep learning or machine learning, in addition to the laws and criteria for measuring the efficiency of the algorithms used. It provides a general summary of the work that has been produced in this field.
In this paper, we introduce the concept of e-small M-Projective modules as a generalization of M-Projective modules.
One hundred twelve urine samples were collected from Baghdad hospitals and examined by different identification techniques. Seventy isolates (62.5%) were diagnosed as Escherichia coli after microscopic and cultural identifications. The result of PCR product electrophoresis on the isolates showed that thirteen isolates (18.57%) have Pap E gene which are uropathogenic E. coli. Antibiotic susceptibility test was done, and four high resistant strains were mixed with aqueous extract of Quercus infectoria plant in 96 well ELISA plate and incubated for different times. After 0, 6, and 12 hr. of incubation, the effect of the plant extract on the bacterial growth was determined by ELISA reader, and the effect on the expression of P
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis
The gaps and cracks in an image result from different reasons and affect the images. There are various methods concerning gaps replenishment along with serious efforts and proposed methodologies to eliminate cracks in diverse tendencies. In the current research work a color image white crack in-painting system has been introduced. The proposed inpainting system involved on two algorithms. They are Linear Gaps Filling (LGF) and the Circular Gaps Filling (CGF). The quality of output image depends on several effects such as: pixels tone, the number of pixels in the cracked area and neighborhood of cracked area and the resolution the image. The quality of the output images of two methods (linear method: average Peak Signal to Noise Ratio (PS
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreMedical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.
One of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues
... Show MoreIn recent years it has spread the used of e-commerce sites quite dramatically. Thus, these sites have become display huge number of diverse products. It became difficulty for the customer to choose what he/she wants from this product. The recommender systems are used to help customers to finding the desired product of their interests and proved to be an important solution to information overload problem.
This paper, designed a recommendation system based on content, which is usually textual description. Furthermore, the proposed system uses cosine similarity function to find the similarities among the characteristics of various products, and nominate a suitable product closer to customer satisfaction. The experimental result shows tha