This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem associated with the quaternary linear hyperbolic boundary value problem is formulated and studied. The directional derivative for the cost functional is derived. Finally, the necessary optimality theorem for the optimal classical continuous control quaternary vector is proved.
The research seeks to identify the contemporary events that face the use of electronic payment methods to localize the salaries of state employees and its impact in enhancing the mental image of customers, and to achieve this purpose from the fact that a questionnaire was designed and distributed to an optional sample of (31) individual customers (employees) dealing With the researched private banks, it has been analyzed and reached a number of conclusions and recommendations, the most prominent of which is the lack of modernity of electronic payment methods by customers, which is reflected in the mental image of customers and the achievement of their satisfaction, in the Emiratization project for salaries needs an advanced leade
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreThe theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show MoreIn this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreIn this paper, the conditions of occurrence of the local bifurcation (such as saddle-node, transcritical and pitchfork) near each of the equilibrium points of a mathematical model consists from four-species Syn- Ecosymbiosis are established.
The concepts of nonlinear mixed summable families and maps for the spaces that only non-void sets are developed. Several characterizations of the corresponding concepts are achieved and the proof for a general Pietsch Domination-type theorem is established. Furthermore, this work has presented plenty of composition and inclusion results between different classes of mappings in the abstract settings. Finally, a generalized notation of mixing maps and their characteristics are extended to a more general setting.
This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
The present study discusses the significant role of the historical memory in all the Spanish society aspects of life. When a novelist takes the role and puts on the mask of one of the novel’s protagonists or hidden characters, his memory of the events becomes the keywords of accessing the close-knit fabric of society and sheds lights on deteriorating social conceptions in a backwards social reality that rejects all new progressive ideas and modernity. Through concentrating on the society flawing aspects and employing everything of his stored memory, the author uses sarcasm to criticize and change such old deteriorating reality conceptions.
&nbs
... Show MoreIn this paper, the conditions of persistence of a mathematical model, consists from
a predator interacting with stage structured prey are established. The occurrence of
local bifurcation and Hopf bifurcation are investigated. Finally, in order to confirm
our obtained analytical results, numerical simulations have been done for a
hypothetical set of parameter values .