This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem associated with the quaternary linear hyperbolic boundary value problem is formulated and studied. The directional derivative for the cost functional is derived. Finally, the necessary optimality theorem for the optimal classical continuous control quaternary vector is proved.
While analytical solutions to Quadratic Assignment Problems (QAP) have indeed been since a long time, the expanding use of Evolutionary Algorithms (EAs) for similar issues gives a framework for dealing with QAP with an extraordinarily broad scope. The study's key contribution is that it normalizes all of the criteria into a single scale, regardless of their measurement systems or the requirements of minimum or maximum, relieving the researchers of the exhaustively quantifying the quality criteria. A tabu search algorithm for quadratic assignment problems (TSQAP) is proposed, which combines the limitations of tabu search with a discrete assignment problem. The effectiveness of the proposed technique has been compared to well-established a
... Show MoreThe Assignment model is a mathematical model that aims to express a real problem facing factories and companies which is characterized by the guarantee of its activity in order to make the appropriate decision to get the best allocation of machines or jobs or workers on machines in order to increase efficiency or profits to the highest possible level or reduce costs or time To the extent possible, and in this research has been using the method of labeling to solve the problem of the fuzzy assignment of real data has been approved by the tire factory Diwaniya, where the data included two factors are the factors of efficiency and cost, and was solved manually by a number of iterations until reaching the optimization solution,
... Show Morehe assignment model represents a mathematical model that aims at expressing an important problem facing enterprises and companies in the public and private sectors, which are characterized by ensuring their activities, in order to take the appropriate decision to get the best allocation of tasks for machines or jobs or workers on the machines that he owns in order to increase profits or reduce costs and time As this model is called multi-objective assignment because it takes into account the factors of time and cost together and hence we have two goals for the assignment problem, so it is not possible to solve by the usual methods and has been resorted to the use of multiple programming The objectives were to solve the problem of
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving
... Show MoreThe focus of this article is to add a new class of rank one of modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that guarantees the existence of the minimizer at every iteration of the objective function. We use the program MATLAB to solve an algorithm function to introduce the feasibility of
... Show MoreResearch Hypothesis from the fact that kicks off the effect that agricultural production in Iraq plays an important role in overcoming the food problem and achieving food security, but he became far far away from the provision of sufficient quantities of food products and then securing the Iraqi consumer food basket by the challenges faced by the agricultural sector.
To prove the hypothesis research in its structure in three axes came, the first axis eating historical significance to the subject of food over time periods as well as to clarify the concept of food security, and the second axis touched on the most important challenges facing the agricultural sector in Iraq and prevent the achievement of food requirements for members of
In this paper, the blow-up solutions for a parabolic problem, defined in a bounded domain, are studied. Namely, we consider the upper blow-up rate estimate for heat equation with a nonlinear Neumann boundary condition defined on a ball in Rn.
Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.
In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show More