Preferred Language
Articles
/
ijs-2253
Deriving The Upper Blow-up Rate Estimate for a Parabolic Problem
...Show More Authors

In this paper, the blow-up solutions for a parabolic problem, defined in a bounded domain, are studied. Namely, we consider the upper blow-up rate estimate for heat equation with a nonlinear Neumann boundary condition defined on a ball in Rn.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Blow-up Rate Estimates and Blow-up Set for a System of Two Heat Equations with Coupled Nonlinear Neumann Boundary Conditions
...Show More Authors

This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in  associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Numerical Blow-up Time of a One-Dimensional Semilinear Parabolic Equation with a Gradient Term
...Show More Authors

  This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions
...Show More Authors

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Blow-up Properties of a Coupled System of Reaction-Diffusion Equations
...Show More Authors

    This paper is concerned with a Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet boundary conditions. Firstly, we studied the blow-up set showing that, under some conditions, the blow-up in this problem occurs only at a single point. Secondly, under some restricted assumptions on the reaction terms, we established the upper (lower) blow-up rate estimates. Finally, we considered the Ignition system in general dimensional space as an application to our results.

View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
ON Numerical Blow-Up Solutions of Semilinear Heat Equations
...Show More Authors

This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.

View Publication Preview PDF
Scopus (14)
Crossref (3)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
The Optimal Control Problem for Triple Nonlinear Parabolic Boundary Value Problem with State Vector Constraints
...Show More Authors

       In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied.  The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived.  Under suitable conditions, theorems of necessary  and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.    

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
The Classical Continuous Optimal Control for Quaternary parabolic boundary value problem
...Show More Authors

     The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution  for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV)  is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem  of the proposed problem is stated and  demonstrated.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Approximation Solution of a Nonlinear Parabolic Boundary Value Problem Via Galerkin Finite Elements Method with Crank-Nicolson
...Show More Authors

    This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control governing by Triple Linear Parabolic Boundary Value Problem
...Show More Authors

This paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Matrix Form of Deriving High Order Schemes for the First Derivative
...Show More Authors

For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref