Data mining is a data analysis process using software to find certain patterns or rules in a large amount of data, which is expected to provide knowledge to support decisions. However, missing value in data mining often leads to a loss of information. The purpose of this study is to improve the performance of data classification with missing values, precisely and accurately. The test method is carried out using the Car Evaluation dataset from the UCI Machine Learning Repository. RStudio and RapidMiner tools were used for testing the algorithm. This study will result in a data analysis of the tested parameters to measure the performance of the algorithm. Using test variations: performance at C5.0, C4.5, and k-NN at 0% missing rate, performance at C5.0, C4.5, and k-NN at 5–50% missing rate, performance at C5.0 + k-NNI, C4.5 + k-NNI, and k-NN + k-NNI classifier at 5–50% missing rate, and performance at C5.0 + CMI, C4.5 + CMI, and k-NN + CMI classifier at 5–50% missing rate, The results show that C5.0 with k-NNI produces better classification accuracy than other tested imputation and classification algorithms. For example, with 35% of the dataset missing, this method obtains 93.40% validation accuracy and 92% test accuracy. C5.0 with k-NNI also offers fast processing times compared with other methods.
Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedu
... Show MoreAbstract A descriptive (retrospective) (a case-control) study was carried out at Al-Karama Teaching Hospital, Baghdad Teaching Hospital and Surgical Specialties Hospital, and Gastro-Intestinal Tract and Liver (GIT) Hospital for the period of December 1st, 2001 To March 15th 2002. To identify aspects of life-style that may contribute to the occurrence of peptic ulcer (P.U)as risk factors. And to find out the relationship between the demographic characteristic of the group. Non-probability (Purposive) sample of (100) cases who were admitted to the endoscopy department who were later on diagnosed as having
This paper studies the existence of positive solutions for the following boundary value problem :-
y(b) 0 α y(a) - β y(a) 0 bta f(y) g(t) λy    ï‚¢ï€
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines ( ï¬ ) Eigenvalue which would be needed to find the positive solution .
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.
The species of Cr (III), Cr (VI) in biological samples and V(IV), V(V) in foods & plants samples were determined by spectrophotometric methods. Integrated spectral studies of complexes [Cr (III, VI)-DPC], [Cr (VI)-bipy], [VO-SH], [V (V)-8-HQ] which included a study of the optimum conditions for the complexes formation by the investigation of the chemical and physical variables affecting each complex formation, the nature of complexes, the preparation of calibration curves of the complexes and treated the resulted data by modern statistical methods and study the interfering species. Interferences were removed to explain the reactions thermodynamically by determining Ecell, Keq. and ∆G values and includes a study of
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreMedical imaging is a technique that has been used for diagnosis and treatment of a large number of diseases. Therefore it has become necessary to conduct a good image processing to extract the finest desired result and information. In this study, genetic algorithm (GA)-based clustering technique (K-means and Fuzzy C Means (FCM)) were used to segment thyroid Computed Tomography (CT) images to an extraction thyroid tumor. Traditional GA, K-means and FCM algorithms were applied separately on the original images and on the enhanced image with Anisotropic Diffusion Filter (ADF). The resulting cluster centers from K-means and FCM were used as the initial population in GA for the implementation of GAK-Mean and GAFCM. Jaccard index was used to s
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show More