E-learning has recently become of great importance, especially after the emergence of the Corona pandemic, but e-learning has many disadvantages. In order to preserve education, some universities have resorted to using blended learning. Currently, the Ministry of Higher Education and Scientific Research in Iraq has adopted e-learning in universities and schools, especially in scientific disciplines that need laboratories and a spatial presence. In this work, we collected a dataset based on 27 features and presented a model utilizing a support vector machine with regression that was enhanced with the KNN method, which identifies factors that have a substantial influence on the model for the type of education, whether blended or traditional.
Furthermore, the dataset used was primarily focused on three key factors: personal information, the impact of e-Learning platforms, and the influence of the Corona virus. The attributes that were measured revealed that social status, computer skills, and the basic platform gave the user enough tools to continue the learning process. The size of the classrooms and laboratories that meet the health safety conditions is the most significant. The goal of our work is to discover a model that predicts how blended learning will be used during and after the coronavirus pandemic and to produce a model with minimal errors.
Effect of Using Computer in Getting and Remaining Information at Students of First Stage in Biology Subject MIAAD NATHIM RASHEED LECTURER Abstract The recent research goal is to know the influence of computer use to earn and fulfillment information for students of first class in biology material and to achieve that put many of the zeroing hypothesis by researcher as follow: There were no differences between statistical signs at level (0,05) between the average students' marks who they were study by using computer and between the average student ' marks who they were study in classical method of earning and fulfillment. The researcher chose the intentional of the medical technical institute that included of two branches the first class (A
... Show MoreInternal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe problem of slow learning in primary schools’ pupils is not a local or private one. It is also not related to a certain society other than others or has any relation to a particular culture, it is rather an international problem of global nature. It is one of the well-recognized issues in education field. Additionally, it is regarded as one of the old difficulties to which ancient people gave attention. It is discovered through the process of observing human behaviour and attempting to explain and predict it.
Through the work of the two researchers via frequent visits to primary schools that include special classes for slow learning pupils, in addition to the fact that one of the researcher has a child with slow learning issue, t
The research aims to identify: 1-Designing a test to measure the movement compatibility of the eye and the leg for the students of the Faculty of Physical Education and Sports Sciences, Samarra University. 2-Codification (setting scores and standard levels) for the results of the motor compatibility test for the eye and the leg for students of the Faculty of Physical Education and Sports Sciences, Samarra University. The researchers reached the some following conclusions: 1-A test to measure the movement compatibility of the eye and the leg for the students of the Faculty of Physical Education and Sports Sciences. 2-There is a discrepancy in the standard levels of the research sample.
APDBN Rashid, Review of International Geographical Education Online (RIGEO), 2021
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More