The huge amount of information in the internet makes rapid need of text
summarization. Text summarization is the process of selecting important sentences
from documents with keeping the main idea of the original documents. This paper
proposes a method depends on Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The first step in our model is based on extracting seven
features for each sentence in the documents set. Multiple Linear Regression (MLR)
is then used to assign a weight for the selected features. Then TOPSIS method
applied to rank the sentences. The sentences with high scores will be selected to be
included in the generated summary. The proposed model is evaluated using dataset
supplied by the Text Analysis Conference (TAC-2011) for English documents. The
performance of the proposed model is evaluated using Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) metric. The obtained results support the
effectiveness of the proposed model.
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreThe purpose of this project is to build a scientific base and computational programs in an accelerator design work. The transfer of group of laws in alinear accelerator cavity to computer codes written in Fortran power station language is inorder to get a numerical calculation of an electromagnetic field generated in the cavities of the linear accelerator. The program in put contains mainly the following, the geometrical cavity constant, and the triangular finite element method high – order polynomial. The out put contains vertical and horizontal components of the electrical field together with the electrical and the magnetic field intensity.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.