The huge amount of information in the internet makes rapid need of text
summarization. Text summarization is the process of selecting important sentences
from documents with keeping the main idea of the original documents. This paper
proposes a method depends on Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The first step in our model is based on extracting seven
features for each sentence in the documents set. Multiple Linear Regression (MLR)
is then used to assign a weight for the selected features. Then TOPSIS method
applied to rank the sentences. The sentences with high scores will be selected to be
included in the generated summary. The proposed model is evaluated using dataset
supplied by the Text Analysis Conference (TAC-2011) for English documents. The
performance of the proposed model is evaluated using Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) metric. The obtained results support the
effectiveness of the proposed model.
Bis-anthraquinones with a unique molecular backbone, (+)-2,2’-epicytoskyrin A (epi) and (+)-1,1′-bislunatin (bis), was produced by endophytic fungi Diaporthe sp GNBP-10 associated with Gambir plant (Uncaria gambier). Epi and bis possess robust antimicrobial activity toward various pathogens. This study focus on knowing the optimum condition of epi and bis production from Diaporthe sp GNBP-10. A series of culture media with various nutrient compositions was investigated in epi and bis production. The content of epi and bis was determined by measuring the area under the curve from TLC-densitometric (scanner) experiment. The linear regression analysis was then applied to obtain the results. The optimi
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreThe healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv
... Show MoreWhen soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreIn this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
In this paper a new technique based on dynamic stream cipher algorithm is introduced. The mathematical model of dynamic stream cipher algorithm is based on the idea of changing the structure of the combined Linear Feedback Shift Registers (LFSR's) with each change in basic and message keys to get more complicated encryption algorithm, and this is done by use a bank of LFSR's stored in protected file and we select a collection of LFSR's randomly that are used in algorithm to generate the encryption (decryption) key.
We implement Basic Efficient Criteria on the suggested Key Generator (KG) to test the output key results. The results of applying BEC prove the robustness and efficiency of the proposed stream cipher cryptosystem.