Cryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of security to Triple Data Encryption Standard algorithm using Nth Degree Truncated Polynomial Ring Unit algorithm. This aim achieved by adding two new key functions, the first one is Enckey(), and the second one is Deckey() for encryption and decryption key of Triple Data Encryption Standard to make this algorithm more stronger. The obtained results of this paper also have good resistance against brute-force attack which makes the system more effective by applying Nth Degree Truncated Polynomial Ring Unit algorithm to encrypt and decrypt key of Triple Data Encryption Standard. Also, these modifications enhance the degree of complexity, increase key search space, and make the ciphered message difficult to be cracked by the attacker.
The physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreAbstract:
The main objective of the research is to build an optimal investment portfolio of stocks’ listed at the Iraqi Stock Exchange after employing the multi-objective genetic algorithm within the period of time between 1/1/2006 and 1/6/2018 in the light of closing prices (43) companies after the completion of their data and met the conditions of the inspection, as the literature review has supported the diagnosis of the knowledge gap and the identification of deficiencies in the level of experimentation was the current direction of research was to reflect the aspects of the unseen and untreated by other researchers in particular, the missing data and non-reversed pieces the reality of trading at the level of compani
... Show MoreThe present study aims to explore the effectiveness of a proposed study unit based on the funds of knowledge theory in developing the attitudes towards cultural identity and the proposed study unit. In order to achieve the goal of the study, the two researchers followed the quasi-experimental approach, where the study sample consisted of (28) female students of the fifth-grade at Al-Jeelah Basic Education School, Al-Dakhiliyah Governorate in the Sultanate of Oman. The data were collected by two scales: the first is a scale of attitudes towards cultural identity consisting of (26) items. The second was a scale of attitudes towards the proposed study unit, which consisted of (24) items. The results of the study revealed that the effect of
... Show MoreGumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreThe Gray Wolf Optimizer (GWO) is a population-based meta-heuristic algorithm that belongs to the family of swarm intelligence algorithms inspired by the social behavior of gray wolves, in particular the social hierarchy and hunting mechanism. Because of its simplicity, flexibility, and few parameters to be tuned, it has been applied to a wide range of optimization problems. And yet it has some disadvantages, such as poor exploration skills, stagnation at local optima, and slow convergence speed. Therefore, different variants of GWO have been proposed and developed to address these disadvantages. In this article, some literature, especially from the last five years, has been reviewed and summarized by well-known publishers. Fir
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreGenetic Algorithms (GA) is a based population approach. It belongs to a metaheuristic procedure that uses population characteristics to guide the search. It maintains and improves multiple solutions which may produce a high-quality solution to an optimization problem. This study presents a comprehensive survey of the GA. We provide and discuss genetic algorithms for new researchers. We illustrate which components build up the GAs and view the main results on complexity time.
Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show More