Preferred Language
Articles
/
ijs-7512
Grey Wolf Optimization Algorithm: A Survey
...Show More Authors

     The Gray Wolf Optimizer (GWO) is a population-based meta-heuristic algorithm  that belongs to the family of swarm intelligence algorithms inspired by the social behavior of gray wolves, in particular the social hierarchy and hunting mechanism. Because of its simplicity, flexibility, and few parameters to be tuned, it has been applied to a wide range of optimization problems. And yet it has some disadvantages, such as poor exploration skills, stagnation at local optima, and slow convergence speed. Therefore, different variants of GWO have been proposed and developed to address these disadvantages. In this article, some literature, especially from the last five years, has been reviewed and summarized by well-known publishers. First, the inspiration and the mathematical model of GWO were explained. Subsequently, the improved GWO variants were divided into four categories and discussed. After that, each variant's methodology and experiments were explained and clarified. The study ends with a summary conclusion of the main foundation of GWO and suggests some possible future directions that can be explored further.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A hybrid Grey Wolf optimizer with multi-population differential evolution for global optimization problems
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 21 2020
Journal Name
2020 Emerging Technology In Computing, Communication And Electronics (etcce)
An Integrated Grey Wolf Optimizer with Nelder-Mead Method for Workflow Scheduling Problem
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
The Genetic Algorithm: A study survey
...Show More Authors

Genetic Algorithms (GA) is a based population approach. It belongs to a metaheuristic procedure that uses population characteristics to guide the search. It maintains and improves multiple solutions which may produce a high-quality solution to an optimization problem. This study presents a comprehensive survey of the GA. We provide and discuss genetic algorithms for new researchers. We illustrate which components build up the GAs and view the main results on complexity time.

View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
SBOA: A Novel Heuristic Optimization Algorithm
...Show More Authors

A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Sep 12 2022
Journal Name
Electronics
TWGH: A Tripartite Whale–Gray Wolf–Harmony Algorithm to Minimize Combinatorial Test Suite Problem
...Show More Authors

Today’s academics have a major hurdle in solving combinatorial problems in the actual world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine optimal solution to a particular problem, despite the limitations of the applied approach. A surge in interest in population-based optimization methodologies has spawned a plethora of new and improved approaches to a wide range of engineering problems. Optimizing test suites is a combinatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial optimization limitation of the research. The authors have proposed an almost infallible method for selecting combinatorial test cases. It uses a hybrid whale–gray wol

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
A Survey of Infill Well Location Optimization Techniques
...Show More Authors

The maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Novel Invasive Weed Optimization Algorithm (IWO) by Whale Optimization Algorithm(WOA) to solve Large Scale Optimization Problems
...Show More Authors

Abstract  

  In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
A Novel Gravity ‎Optimization Algorithm for Extractive Arabic Text Summarization
...Show More Authors

 

An automatic text summarization system mimics how humans summarize by picking the most ‎significant sentences in a source text. However, the complexities of the Arabic language have become ‎challenging to obtain information quickly and effectively. The main disadvantage of the ‎traditional approaches is that they are strictly constrained (especially for the Arabic language) by the ‎accuracy of sentence feature ‎functions, weighting schemes, ‎and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
A Proposal Algorithm to Solve Delay Constraint Least Cost Optimization Problem
...Show More Authors

Traditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 01 2008
Journal Name
2008 International Conference On Computer And Communication Engineering
A binary Particle Swarm Optimization for attacking knapsacks Cipher Algorithm
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref