The goal of this research is to use optical emission spectroscopy to investigate the parameters of exploding silver wire plasma. The silver discharge plasma's emission spectra were recorded and studied. For silver wire of diameter 0.4 mm and different currents 75,100, and 125A in deionized water, the plasma electron temperature ( ) was calculated by Boltzmann plot and container plasma medium temperature by thermal camera, and the electron density ( ) was computed by Stark broadening using the hydrogen (H line) at 656.279 nm With increasing current from 75 to 125 A, the electron density (ne) increased from 3.160× to 8.762× , while electron temperatures increased from 0.571 to 1.334 eV under the same conditions. The plasma's optical emission spectrum (OES) includes a peak at 653 nm that corresponds to the H line of the hydrogen atom, as well as additional peaks that belong to Ag (AgI and AgII lines). Researchers looked into the relationship between plasma electron temperature, emission line intensity, and number density. Nanoparticle concentration rises as the intensity of the emission line rises, while their size decreases. It is feasible to deduce that plasma parameters have a regulated relationship with the concentration and size of nanoparticles produced.
This research studies the effect regarding two plasma types, plasma jet and plasma-activated water (PAW), on tooth root canal bacteria Enterococcus faecalis. The plasma jet works with argon gas, and it is generated by a power supply that operates at alternating high voltages in the form of a sinusoidal wave with peak-to-peak value of about 12 kV at a frequency of 30 KHz and its power is about 200 watts. This plasma was utilized directly to treat the tooth canal and indirectly by activating the water that was used later for treating the Enterococcus faecalis bacteria that are present in the tooth root. Pure distilled water was treated by plasma jet for one hour at flow rate 1 . Plasma water activated by plasma contains
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreIn the current study, the emission spectra generated from clove were measured under normal atmospheric pressure with different laser energies. Clove is used as a source of essential oil in herbal medicine, in particular as a dynamic analgesic oil in dental and other diseases. For aromatherapy, Antiseptic, antiviral, and antimicrobial agents are also packaged with cloves. Compounds that reduce inflammation tend to battle sore throats, cold, and cough as they display so many advantages. The measured spectrum reveals distinctive lines of clove’s chemical elements. X-ray fluorescent (XRF) and atomic absorption spectrometry (AAS) were used to measure the spectrum generated or absorbed by detecting the presence of va
... Show MorePVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreAbstract
The current study was carried out to reveal the plasma parameters such as ,the electron temperature ( ), electron density (ne) , plasma frequency (fp), Debye length ( ) , Debye number ( for CdS to employ the LIBS for the purpose of analyzing and determining spectral emission lines using . The results of electron temperature for CdS range (0.746-0.856) eV , the electron density(3.909-4.691)×1018 cm-3. Finally ,we discuss plasma parameters of CdS through nano second laser generated plasma .
In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
The reclamation of makeup water is studied in terms of breakthrough time (i.e., the leakage of the cations). Makeup water was subjected to lab-scale ion exchangers of two types: strong acid cation and weak base anion exchanger. The experimental investigation was directed to study the ion exchanger performance in terms of four different parameters (i.e., copper concentration, total dissolved solids (TDS), feed rate and bed depth). Box-Wilson composite rotatable design was adopted in designing the experiments. Breakthrough times of the effluent stream are measured in terms of copper concentration of 2 to 25 ppm, TDS concentration of 250 to 1250 ppm, feed rate of 0.38 to 5.34 l/h and bed depth of 5 to 70 cm. Simulation the effect of the stu
... Show MoreIn this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The change
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreIn this work, plasma parameters such as electron density (ne), electron temperature (Te), Debye length (λD), plasma frequency (fPlasma), and Debye number (ND) for Cu plasma produced by Pin-Plate DC discharge were studied. Spectroscopic technique was used to analyze and determine spectral emission lines. The value of the electron density for Cu was in the range (1.5–3.5)×1018cm-3 and for the electron temperature was in the range ( 1.31 – 1.61)eV. Finally, plasma parameters of Cu were caculated through plasma produced by Pin-Plate DC discharge using different voltages (600-900) V.