Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods. The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreAbstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
Background: coronavirus 19 is a beta-coronavirus, enveloped and roughly spherical with approximately 60 to 140 nm in diameter with positive-sense single-stranded RNA genome.
Objectives: Measurement of interleukin 6 (IL6) level in a group of patients with confirmed Covid19 infection and its correlation with many hematological and biochemical parameters , mainly lymphocyte , neutrophil count and their ratio , platelet count , serum ferritin , C reactive protein as well as D-dimer level
Subjects and Methods: This study was conducted on 60 PCR positive patients variably affected by COVID-19 , cases collected sequentially from June till November 20
... Show MoreThe study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp
... Show MoreThe presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
Frequent data in weather records is essential for forecasting, numerical model development, and research, but data recording interruptions may occur for various reasons. So, this study aims to find a way to treat these missing data and know their accuracy by comparing them with the original data values. The mean method was used to treat daily and monthly missing temperature data. The results show that treating the monthly temperature data for the stations (Baghdad, Hilla, Basra, Nasiriya, and Samawa) in Iraq for all periods (1980-2020), the percentage for matching between the original and the treating values did not exceed (80%). So, the period was divided into four periods. It was noted that most of the congruence values increased, re
... Show MoreResearch summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show More