Preferred Language
Articles
/
ijs-5753
Benchmarking Framework for COVID-19 Classification Machine Learning Method Based on Fuzzy Decision by Opinion Score Method
...Show More Authors

     Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods.  The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Sentiment Analysis in Social Media using Machine Learning Techniques
...Show More Authors

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show

... Show More
View Publication Preview PDF
Scopus (28)
Crossref (12)
Scopus Crossref
Publication Date
Wed Jun 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Molecular Detection of Porphyromonas gingivalis in COVID-19 Patients
...Show More Authors

Background:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to th

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 10 2023
Journal Name
Dentistry Journal
The Role of Social Media in Communication and Learning at the Time of COVID-19 Lockdown—An Online Survey
...Show More Authors

This study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l

... Show More
View Publication
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
A Smishing Detection Method Based on SMS Contents Analysis and URL Inspection Using Google Engine and VirusTotal
...Show More Authors

    Smishing is the delivery of phishing content to mobile users via a short message service (SMS). SMS allows cybercriminals to reach out to mobile end users in a new way, attempting to deliver phishing messages, mobile malware, and online scams that appear to be from a trusted brand. This paper proposes a new method for detecting smishing by combining two detection methods. The first method is uniform resource locators (URL) analysis, which employs a novel combination of the Google engine and VirusTotal. The second method involves examining SMS content to extract efficient features and classify messages as ham or smishing based on keywords contained within them using four well-known classifiers: support vector machine (SVM), random

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
A mathematical model for the dynamics of COVID-19 pandemic involving the infective immigrants
...Show More Authors

‎  Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19    pandemic  ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (9)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
ECC Based Encryption for the Secured Proactive Network Forensic Framework
...Show More Authors

     Elliptic Curve Cryptography (ECC) is one of the public key cryptosystems that works based on the algebraic models in the form of elliptic curves. Usually, in ECC to implement the encryption, the encoding of data must be carried out on the elliptic curve, which seems to be a preprocessing step. Similarly, after the decryption a post processing step must be conducted for mapping or decoding the corresponding data to the exact point on the elliptic curves. The Memory Mapping (MM) and Koblitz Encoding (KE) are the commonly used encoding models. But both encoding models have drawbacks as the MM needs more memory for processing and the KE needs more computational resources. To overcome these issues the proposed enhanced Koblitz encodi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Dec 09 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Exacerbation of COVID 19 in Hypertensive Patients ( A review)
...Show More Authors

Since its discovery in December 2019, corona virus was outbreak worldwide with very rapid rate, so it described by WHO as pandemic. It associated with severe acute respiratory distress syndrome, and can enter to cells through Angiotensin Converting Enzyme 2 (ACE 2) receptor which play an important role as regulator for blood pressure. Hypertension is a potential risk factor for sever acute respiratory syndrome COVID-19, and associated with high mortality rate as shown in many epidemiological studies. Moreover, specific antihypertensive medications that infected patients were receiving are not known; only data about renin-angiotensin-aldosterone system (RAAS) are available.  

View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Content Based Image Retrieval Based on Feature Fusion and Support Vector Machine
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Application of Box-Behnken Method Based ANN-GA to Prediction of wt.% of Doping Elements for Incoloy 800H Coated by Aluminizing-Chromizing
...Show More Authors

In this work , an effective procedure of Box-Behnken based-ANN (Artificial Neural Network) and GA (Genetic Algorithm) has been utilized for finding the optimum conditions of wt.% of doping elements (Ce,Y, and Ge) doped-aluminizing-chromizing of Incoloy 800H . ANN and Box-Behnken design method have been implanted for minimizing hot corrosion rate kp (10-12g2.cm-4.s-1) in Incoloy 800H at 900oC . ANN was used for estimating the predicted values of hot corrosion rate kp (10-12g2.cm-4.s-1) . The optimal wt.% of doping elements combination to obtain minimum hot corrosion rate was calculated using genetic alg

... Show More
View Publication Preview PDF