Preferred Language
Articles
/
ijs-5753
Benchmarking Framework for COVID-19 Classification Machine Learning Method Based on Fuzzy Decision by Opinion Score Method
...Show More Authors

     Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods.  The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Nahrain University, College Of Engineering Journal
Planned Reliability Improvement Calculation of Iraqi Super Grid Applying Fuzzy Logic Method
...Show More Authors

Reliability is an essential measure and important component of all power system planning and operation procedures. It is one of the key design factors when designing complex, critical and expensive systems. This paper presents a fuzzy logic approach for reliability improvement planning purposes. Evaluating the reliability of the complex and large planned Iraqi super grid ;as Al- Khairat generating station with its tie set is intended to be compact to that grid; and determination of the given reliability improvement project are the major goals of the paper. Results show that the Iraqi super grid reliability is improved by 9.64%. In the proposed technique, fuzzy set theory is used to include imprecise indices of different components in normal

... Show More
Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Some Numerical Simulation Techniques for COVID-19 Model in Iraq
...Show More Authors

The aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Air Quality Analysis of the Capitol City in Developing Countries During COVID-19 Emergency Care Based on Internet of Things Data
...Show More Authors

     This paper attempts to develop statistical modeling for air-conditioning analysis in Jakarta, Indonesia, during an emergency state of community activity restrictions enforcement (Emergency CARE), using a variety of parameters such as PM10, PM2.5, SO2, CO, O3, and NO2 from five IoT-based air monitoring systems. The parameters mentioned above are critical for assessing the air quality conditions and concentration of air pollutants.  Outdoor air pollution concentration variations before and after the Emergency CARE, which was held in Indonesia during the COVID-19 pandemic on July 3-21, 2021, were studied. An air quality monitoring system based on the IoT generates sensor data

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Feb 16 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Knowledge, Attitudes, Practices, and Online Distance Learning Experience of Malaysian University Students towards COVID-19: A Cross Sectional Study(Conference Paper )#
...Show More Authors

Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Student Conference On Research And Development
Feature extraction for co-occurrence-based cosine similarity score of text documents
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Predicting COVID-19 in Iraq using Frequent Weighting for Polynomial Regression in Optimization Curve Fitting
...Show More Authors

     The worldwide pandemic Coronavirus (Covid-19) is a new viral disease that spreads mostly through nasal discharge and saliva from the lips while coughing or sneezing. This highly infectious disease spreads quickly and can overwhelm healthcare systems if not controlled. However, the employment of machine learning algorithms to monitor analytical data has a substantial influence on the speed of decision-making in some government entities.        ML algorithms trained on labeled patients’ symptoms cannot discriminate between diverse types of diseases such as COVID-19. Cough, fever, headache, sore throat, and shortness of breath were common symptoms of many bacterial and viral diseases.

This research focused on the nu

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
DeepFake Detection Improvement for Images Based on a Proposed Method for Local Binary Pattern of the Multiple-Channel Color Space
...Show More Authors

DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 29 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Preparation, Characterization and Optimization of Etoposide-Loaded Gold Nanoparticles Based on Chemical Reduction Method
...Show More Authors

In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref