Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods. The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.
The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
A simple reverse-phase high performance liquid chromatographic method for the simultaneous analysis (separation and quantification) of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) has been developed and validated. The method was carried out on a NUCLEODUR® 100-5 C18ec column (250 x 4.6 mm, i. d.5μm), with a mobile phase comprising of acetonitrile: deionized water (50: 50 v/v, pH adjusted to 3.6 ±0.05 with acetic acid) at a flow rate 1.5 mL.min-1 and the quantification was achieved at 226 nm. The retention times of FURO, CARB, DIAZ and CARV were found to be 1.90 min, 2.79 min, 5.39 min and 9.56 min respectively. The method was validated in terms of linearity, accuracy, precision, limit of detection and li
... Show MoreGas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
The 2D resistivity imaging technique was applied in an engineering study for the investigation of subsurface weakness zones within University of Anbar, western Iraq. The survey was carried out using Dipole-dipole array with an n-factor of 6 and a-spacing values of 2 m and 5 m. The inverse models of the 2D electrical imaging clearly show the resistivity contrast between the anomalous parts of the weakness zones and the background resistivity distribution. The thickness and shape of the subsurface weakness zones were well defined from the 2D imaging using Dipole-dipole array of 2 m a-spacing. The thickness of the weakness zone ranges between 9.5 m to 11.5 m. Whereas the Dipole-dipole array with a-spacing of 5 m and n-factor of 6 allocated
... Show MoreIn this paper, we shall investigate and study some kinds of ideals in an intuitionistic fuzzy setting, they are called complete intuitionistic fuzzy subalgebra, complete intuitionistic fuzzy ideal, and complete intuitionistic fuzzy ideal. In this study, we have also proposed some hypotheses to explain some of the relationships between these kinds of intuitionistic fuzzy ideals.
Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show More