Nowadays, a very widespread of smartphones, especially Android smartphones, is observed. This is due to presence of many companies that produce Android based phones and provide them to consumers at reasonable prices with good specifications. The actual benefit of smartphones lies in creating communication between people through the exchange of messages, photos, videos, or other types of files. Usually, this communication is through the existence of an access point through which smartphones can connect to the Internet. However, the availability of the Internet is not guaranteed in all places and at all times, such as in crowded places, remote areas, natural disasters, or interruption of the Internet connection for any reason. To create a communication between devices, it is resorted to creating an ad hoc network using Device-to-Device technology. Wi-Fi Direct technology offers a suitable platform for creating an ad hoc network, as it supports the speed and range of standard Wi-Fi. In this paper, a mechanism is proposed to build an infrastructure-less ad hoc network, through developing the Wi-Fi direct protocol for Android smartphones. This network provides users ability to have a reliable communication, using the reliable Transmission Control Protocol only, and can continuously expand. Therefore it would be very beneficial in the absence of other infrastructure communication media such as cellular or Wi-Fi internet access.
Elliptic Curve Cryptography (ECC) is one of the public key cryptosystems that works based on the algebraic models in the form of elliptic curves. Usually, in ECC to implement the encryption, the encoding of data must be carried out on the elliptic curve, which seems to be a preprocessing step. Similarly, after the decryption a post processing step must be conducted for mapping or decoding the corresponding data to the exact point on the elliptic curves. The Memory Mapping (MM) and Koblitz Encoding (KE) are the commonly used encoding models. But both encoding models have drawbacks as the MM needs more memory for processing and the KE needs more computational resources. To overcome these issues the proposed enhanced Koblitz encodi
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreAbstract
Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This study aims to answer the following question: Is a student who attaches to the social group strongly affected by social interaction and social status? The population of the study included a group of medical students at the University of Al-Kufa. To collect the required data, a scale of Social Group Attachment consisting of (25) items was administered to a sample of (600) students, (257) male students, and (343) female students. The results revealed that students do not have a high level of attachment to the social group and they have a fear of that. There are no significant differences between the levels of attachment between males and females. There are no significant differences regarding colleges, the four academic levels, a
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MorePower switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin
... Show More